明胶
麦芽三糖
海藻糖
甘露醇
原液
化学
木糖醇
色谱法
食品科学
材料科学
生物化学
麦芽糖
发酵
物理化学
蔗糖
作者
Farhan AlHusban,Yvonne Perrie,Afzal R. Mohammed
标识
DOI:10.2174/156720110790396427
摘要
Despite recent success, rapidly disintegrating lyophilized tablets still face problems of low mechanical strength and higher disintegration times resulting in poor patient compliance. The aim of the current work was to carry out a systematic study to understand the factors controlling mechanical properties of these formulations. The work investigated the influence of two bloom strengths of gelatin: low (60 bloom) and high (225 bloom) at different stock solution concentrations (2, 5, 7.5, and 10 %w/w). This was followed by investigation of addition of five saccharides (xylitol, glucose, trehalose, maltotriose and mannitol) at varied concentration range (10-80 %w/w) to decipher their influence on disintegration time, mechanical and thermal properties of the formulation. The results indicated that the disintegration time of the tablets dramatically decreased by decreasing the concentration and bloom strength of gelatin in the stock solution. However the mechanical properties of the tablets were mainly influenced by the concentration of gelatin rather than the bloom strength. The addition of saccharides resulted in enhancement of tablet properties and was concentration dependent. All the saccharides improved the fractubility of the tablets significantly at high concentration (equal or higher than 40% w/w). However, only high concentration (equal or higher than 40% w/w) of trehalose, maltotriose and mannitol significantly enhanced the hardness. Additionally, mannitol crytallised during freeze drying and consequently produced elegant tablets, whilst the other saccarides exhibited lyoprotectant activity as they were able to retain amorphous status. Based on the above findings, an optimized formulation was also successfully developed and characterized to deliver 100 microg dose of Clonidine HCl.
科研通智能强力驱动
Strongly Powered by AbleSci AI