Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

眼底(子宫) 深度学习 人工智能 视网膜 平均绝对误差 血压 医学 接收机工作特性 计算机科学 眼科 心脏病学 机器学习 统计 内科学 数学 均方误差
作者
Ryan Poplin,Avinash V. Varadarajan,Katy Blumer,Yun Liu,Michael V. McConnell,Greg S. Corrado,Lily Peng,Dale R. Webster
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:2 (3): 158-164 被引量:1494
标识
DOI:10.1038/s41551-018-0195-0
摘要

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction. Deep learning predicts, from retinal images, cardiovascular risk factors—such as smoking status, blood pressure and age—not previously thought to be present or quantifiable in these images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮秋凌完成签到,获得积分10
1秒前
香蕉觅云应助kkeeaa采纳,获得10
1秒前
2秒前
沐雨清风完成签到,获得积分10
3秒前
雍远望发布了新的文献求助10
3秒前
科研助手6应助金有财采纳,获得10
7秒前
7秒前
动听雁山完成签到 ,获得积分10
9秒前
9秒前
9秒前
雍远望完成签到,获得积分10
10秒前
Xx丶完成签到,获得积分10
10秒前
香蕉不言发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
华仔应助聪明可爱小绘理采纳,获得10
15秒前
18秒前
露似珍珠月似弓完成签到,获得积分10
18秒前
一一发布了新的文献求助10
19秒前
微笑天磊完成签到,获得积分10
21秒前
香蕉不言完成签到,获得积分10
21秒前
21秒前
情怀应助执着惜梦采纳,获得10
22秒前
22秒前
23秒前
kkeeaa发布了新的文献求助10
24秒前
24秒前
栗子馅完成签到,获得积分10
24秒前
Xscut发布了新的文献求助20
26秒前
旧辞发布了新的文献求助10
27秒前
shutup发布了新的文献求助10
27秒前
酷炫涫发布了新的文献求助10
27秒前
香蕉筮完成签到,获得积分10
28秒前
哈哈哈完成签到,获得积分10
30秒前
hh发布了新的文献求助10
30秒前
学术长颈鹿完成签到,获得积分10
34秒前
34秒前
35秒前
第十五日夜完成签到,获得积分10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800229
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325604
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547