Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 判别式 模态(人机交互) 深度学习 上下文图像分类 分类器(UML) 图像(数学)
作者
Xin Yang,Chaoyue Liu,Zhiwei Wang,Jun Yang,Hung Le Min,Liang Wang,Kwang‐Ting Cheng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:42: 212-227 被引量:140
标识
DOI:10.1016/j.media.2017.08.006
摘要

Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive thresholding are applied to the corresponding cancer response maps for PCa foci localization. Evaluation based on 160 patient data with 12-core systematic TRUS-guided prostate biopsy as the reference standard demonstrates that our system achieves a sensitivity of 0.46, 0.92 and 0.97 at 0.1, 1 and 10 false positives per normal/benign patient which is significantly superior to two state-of-the-art CNN-based methods (Oquab et al., 2015; Zhou et al., 2015) and 6-core systematic prostate biopsies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Fsy采纳,获得10
刚刚
JiaqiDijon发布了新的文献求助10
1秒前
栀蓝发布了新的文献求助10
1秒前
大模型应助尺素寸心采纳,获得10
1秒前
yucj发布了新的文献求助10
1秒前
于玕完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Zhou发布了新的文献求助10
2秒前
无情的白桃完成签到,获得积分10
3秒前
新风完成签到,获得积分10
3秒前
3秒前
老实棒棒糖完成签到,获得积分10
3秒前
遢霧发布了新的文献求助10
3秒前
三七完成签到,获得积分10
3秒前
3秒前
lizz完成签到,获得积分20
4秒前
4秒前
鱼儿乐园完成签到 ,获得积分10
5秒前
无辜丹翠完成签到,获得积分10
5秒前
5秒前
林珍发布了新的文献求助10
5秒前
科研通AI6应助魔幻的千青采纳,获得10
5秒前
6秒前
夫子1987完成签到,获得积分10
6秒前
华仔应助着急的彩虹采纳,获得10
6秒前
zhangzhang完成签到,获得积分10
6秒前
7秒前
liumenghan完成签到,获得积分10
7秒前
gooofy发布了新的文献求助10
7秒前
fanlin完成签到,获得积分0
7秒前
xaogny发布了新的文献求助10
7秒前
张慧完成签到,获得积分10
7秒前
8秒前
8秒前
风吹麦田应助蘸酱采纳,获得100
8秒前
TJJJJJ发布了新的文献求助10
8秒前
威武的绿草完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402945
求助须知:如何正确求助?哪些是违规求助? 4521448
关于积分的说明 14085598
捐赠科研通 4435393
什么是DOI,文献DOI怎么找? 2434675
邀请新用户注册赠送积分活动 1426840
关于科研通互助平台的介绍 1405544