Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3

材料科学 发光二极管 光电子学 量子效率 二极管 原子层沉积 带材弯曲 宽禁带半导体 X射线光电子能谱 能量转换效率 图层(电子) 纳米技术 核磁共振 物理
作者
Kwang‐Eun Kim,Mengyuan Hua,Dong Liu,Jisoo Kim,Kevin J. Chen,Zhenqiang Ma
出处
期刊:Nano Energy [Elsevier BV]
卷期号:43: 259-269 被引量:37
标识
DOI:10.1016/j.nanoen.2017.11.047
摘要

Improving the energy conversion efficiency of light-emitting diodes (LEDs) for blue light emission has been a continuing pursuit for the past several decades. Here, we report InGaN/GaN LEDs with improved energy efficiency through the simple deposition of multifunctional ultrathin AlN/Al2O3 layers on top of p-type GaN (i.e., GaN:Mg) using remote plasma pretreatment and plasma-enhanced atomic-layer deposition (PEALD). The AlN/Al2O3 stacked layers played principal roles in improving the LED energy efficiency: 1) The surface defect states of p-type GaN were reduced to minimize leakage current and oxidation was prevented by passivating the GaN surface; 2) the net positive charges formed at the AlN/GaN interface enhanced the hole injection rate into the multi-quantum well (MQW) by formation of downward band bending with the increased surface potential; and 3) the increased hole injection rate induced the band-filling effect and screening of internal polarization fields in the MQW. The AlN/Al2O3 stacked layers deposited on the GaN:Mg have overall improved the radiative recombination rate of the InGaN/GaN LEDs and thus light-emission efficiency. X-ray photoelectron spectroscopy was used to characterize the surface potential change of GaN. The peak efficiency values of wall-plug efficiency, the external-quantum efficiency, and the efficacy of the AlN/Al2O3 coated InGaN/GaN LEDs were improved by 29%, 29%, and 30%, respectively. The corresponding efficiency droop rates were decreased by 13%, 6% and 3%, respectively, as compared to those of reference LEDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
汉堡包应助WYF采纳,获得10
1秒前
1秒前
1秒前
su完成签到 ,获得积分10
2秒前
3秒前
3秒前
6秒前
Cheung2121发布了新的文献求助30
7秒前
7秒前
玖东发布了新的文献求助10
8秒前
契合发布了新的文献求助10
9秒前
桐桐应助勇敢的心采纳,获得10
10秒前
11秒前
陶菊苏月发布了新的文献求助10
11秒前
12秒前
12秒前
WYF发布了新的文献求助10
15秒前
情怀应助咚咚糖采纳,获得10
15秒前
100关注了科研通微信公众号
15秒前
16秒前
16秒前
17秒前
18秒前
JamesPei应助薛白采纳,获得10
19秒前
Hu发布了新的文献求助10
19秒前
香蕉觅云应助kk采纳,获得10
20秒前
20秒前
木木发布了新的文献求助10
22秒前
liujx发布了新的文献求助10
22秒前
勇敢的心发布了新的文献求助10
22秒前
23秒前
23秒前
Mly给Mly的求助进行了留言
24秒前
25秒前
嘟嘟嘟发布了新的文献求助10
25秒前
傲娇的梦寒完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
monly应助正直的故事采纳,获得10
27秒前
27秒前
高分求助中
Organic Chemistry 30086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302258
求助须知:如何正确求助?哪些是违规求助? 3826133
关于积分的说明 11977717
捐赠科研通 3467286
什么是DOI,文献DOI怎么找? 1901673
邀请新用户注册赠送积分活动 949361
科研通“疑难数据库(出版商)”最低求助积分说明 851412