阴极
电池(电)
材料科学
聚合物
石墨
化学工程
氧化还原
有机自由基电池
储能
功率密度
硫黄
纳米技术
电压
能量密度
极限(数学)
电流密度
高能
电极
有机聚合物
激进的
比能量
配位聚合物
导电聚合物
作者
Yuxi Guo,Ke Guo,Wei Wang,Zheng Huang,Yaxue Wang,Mingyong Wang,Yanli Zhu,Shuqiang Jiao
摘要
Abstract Simultaneously attaining high energy density and long cycling life remains a critical challenge for aluminum-organic batteries (AOBs) due to low operating voltage, limited active sites, and unstable coordination structure of organic cathodes. Herein, we design a multisite super-crosslinked sulfur-heterocyclic polymer cathode. The electronegative sulfur heterocycles can significantly weaken the electron-donating effect, promoting the operating voltage to 2.0 V (average ∼1.7 V), which is a breakthrough for AOBs (almost all AOBs < 1.5 V). Tailoring the linking patterns of polymers to increase active sites can maximize redox activity to 12-electrons-transfer, contributing to a high capacity of 150 mAh g−1. The designed organic cathode achieves 255 Wh kg−1 energy density, breaking the upper limit of conventional graphite cathodes (∼200 Wh kg−1). Notably, the weak coordination interaction between C‒S+‒C radicals and AlCl4− carriers ensures structural stability, enabling the battery excellent low-temperature durability, with almost 100% capacity retention after 12 000 cycles at − 20°C.
科研通智能强力驱动
Strongly Powered by AbleSci AI