作者
Guangquan Chen,Qianqian Sun,Shiyi Xiong,Tianyou Cao,Bin Du,Qing-Ping Wang,Jing Li,Qian Luo,Chao Zhao,Guangquan Chen,Qianqian Sun,Shiyi Xiong,Tianyou Cao,Bin Du,Qing-Ping Wang,Jing Li,Qian Luo,Chao Zhao
摘要
Gestational exposure to micro- and/or nanoparticles (M/NPs) may be closely associated with adverse maternal and offspring outcomes involving multiple organ dysfunctions. Organ functional change is achieved through metabolic adaptation in response to changes in the external environment; yet, intricacies of these organ dysfunctions and underlying metabolic changes remain poorly understood, particularly at spatial suborgan level. Using a pregnant mouse model exposed to polystyrene (PS)-M/NPs (sizes: 100 nm, 5 μm, 10 mg/L in drinking water) from gestation day 1 to 18, we construct a comprehensive multisub-organ lipid metabolic landscape. This analysis integrates MALDI-mass spectrometry imaging with histological assessment to monitor changes in maternal suborgans-placenta-fetus unit. Our findings reveal distinct metabolic responses between maternal and fetal organs to gestational PS-M/NPs exposure. We identify potential targeted suborgans and spatial biomarkers associated with PS-M/NPs exposure according to histological damage and metabolic remodeling, including placental junctional and labyrinth zone (e.g., phosphatidylserine, phosphatidylethanolamine [PE]), renal cortex of maternal kidney (e.g., ceramide [Cer], PE, sphingomyelin [SM], phosphatidylglycerol [PG], phosphatidylserine), ventricular muscular layer and interventricular septum of maternal heart (e.g., PE, lysophosphatidylethanolamine [LPE], lysophosphatidic acid [LPA]), fetal brain and spinal cord (e.g., Cer), and fetal liver (e.g., Cer). Furthermore, phosphatidylserine synthesis and glycolipid metabolism pathways are found to be exclusively enriched following PS-NP and PS-MP exposure in the multiorgan network, respectively. We propose an M/NPs scale-exposed suborgan effect framework, which provides a molecular foundation and potential spatial biomarkers for elucidating intersub-organ interactions in response to M/NPs exposure and their role in mediating pregnancy state.