材料科学
氧气
无机化学
催化作用
离子
氧化还原
电解
再分配(选举)
法拉第效率
阴极
钙钛矿(结构)
析氧
氯化物
化学工程
吸附
电催化剂
电化学
格子(音乐)
碳酸盐
反应性(心理学)
作者
Shaowei Zhang,Xueyu Hu,Tianfu Liu,Hewei Liu,Yige Guo,Geng Zou,Wenwen Zhang,Xiaomin Zhang,Peng Zhang,Runsheng Yu,Yuefeng Song,Changrong Xia,Guoxiong Wang,Xinhe Bao,Shaowei Zhang,Xueyu Hu,Tianfu Liu,Hewei Liu,Yige Guo,Geng Zou
标识
DOI:10.1002/adma.202518116
摘要
Abstract Tuning lattice oxygen activity in perovskite oxides (ABO 3 ) offers a promising approach to overcome the intrinsic trade‐off between catalytic activity and stability in redox reactions. However, precise modulation and mechanistic understanding of lattice oxygen activation remain elusive under high‐temperature CO 2 electrolysis conditions. Herein, a novel anion activation strategy is proposed by incorporating trace chloride ions (Cl − ) into the O‐sites of Sr 2 Fe 1.5 Mo 0.5 O 6−δ perovskite forming an oxychloride cathode. This Cl − substitution activates lattice oxygen reactivity by weakening Mo−O/Fe−O covalency, thereby facilitating the formation and redistribution of oxygen vacancies, accelerating bulk oxygen ion transport, enhancing CO 2 adsorption and carbonate intermediate formation, and ultimately promoting CO 2 reduction kinetics. As a result, the oxychloride cathode achieves a 60.2–80.8% enhancement in CO 2 ‐to‐CO electrolysis, reaching 2.02 A cm −2 at 800 °C and 1.5 V with ≈100% Faradaic efficiency, while maintaining exceptional stability of 500 h. This work establishes a new paradigm of O‐site anion engineering to unlock lattice oxygen activity for electrocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI