已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constructing a Consciousness Meter Based on the Combination of Non-Linear Measurements and Genetic Algorithm-Based Support Vector Machine

支持向量机 意识 计算机科学 人工智能 算法 遗传算法 心理学 机器学习 神经科学 物理 天文
作者
Zhenhu Liang,Shuai Shao,Zhe Lv,Duan Li,Jamie Sleigh,Xiaoli Li,Chongyang Zhang,Jianghong He
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 399-408 被引量:32
标识
DOI:10.1109/tnsre.2020.2964819
摘要

Objective: Constructing a framework to evaluate consciousness is an important issue in neuroscience research and clinical practice. However, there is still no systematic framework for quantifying altered consciousness along the dimensions of both level and content. This study builds a framework to differentiate the following states: coma, general anesthesia, minimally conscious state (MCS), and normal wakefulness. Methods: This study analyzed electroencephalography (EEG) recorded from frontal channels in patients with disorders of consciousness (either coma or MCS), patients under general anesthesia, and healthy participants in normal waking consciousness (NWC). Four non-linear methods—permutation entropy (PE), sample entropy (SampEn), permutation Lempel-Ziv complexity (PLZC), and detrended fluctuation analysis (DFA)—as well as relative power (RP), extracted features from the EEG recordings. A genetic algorithm-based support vector machine (GA-SVM) classified the states of consciousness based on the extracted features. A multivariable linear regression model then built EEG indices for level and content of consciousness. Results: The PE differentiated all four states of consciousness (p<0.001). Altered contents of consciousness for NWC, MCS, coma, and general anesthesia were best differentiated by the SampEn, and PLZC. In contrast, the levels of consciousness for these four states were best differentiated by RP of Gamma and PE. A multi-dimensional index, combined with the GA-SVM, showed that the integration of PE, PLZC, SampEn, and DFA had the highest classification accuracy (92.3%). The GA-SVM was better than random forest and neural networks at differentiating these four states. The 'coordinate value' in the dimensions of level and content were constructed by the multivariable linear regression model and the non-linear measures PE, PLZC, SampEn, and DFA. Conclusions: Multi-dimensional measurements, especially the PE, SampEn, PLZC, and DFA, when combined with GA-SVM, are promising methods for constructing a framework to quantify consciousness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王木木完成签到,获得积分10
3秒前
LIU完成签到 ,获得积分10
5秒前
orixero应助惠飞薇采纳,获得10
5秒前
qiaoqiao完成签到,获得积分20
7秒前
7秒前
dreamsci完成签到 ,获得积分10
11秒前
11秒前
11秒前
hehe完成签到,获得积分10
12秒前
请叫我风吹麦浪应助zzx采纳,获得10
12秒前
龙仔发布了新的文献求助10
12秒前
张馨戈完成签到,获得积分10
14秒前
16秒前
CHEN完成签到,获得积分10
17秒前
18秒前
19秒前
科研通AI5应助tianguoheng采纳,获得10
20秒前
七叶树完成签到,获得积分10
20秒前
科小白完成签到 ,获得积分10
21秒前
22秒前
25秒前
华仔应助七安得安采纳,获得10
25秒前
25秒前
qiaoqiao发布了新的文献求助20
26秒前
科研通AI5应助缥缈的雁枫采纳,获得10
27秒前
诸葛语琴发布了新的文献求助10
29秒前
可爱的函函应助jinx采纳,获得10
29秒前
31秒前
小九202301发布了新的文献求助10
32秒前
不是肖六发布了新的文献求助50
36秒前
DrDaiJune完成签到,获得积分10
38秒前
善学以致用应助tlh采纳,获得10
38秒前
乐乐应助SakuraLianE采纳,获得10
41秒前
leisure发布了新的文献求助10
41秒前
8R60d8应助不懈奋进采纳,获得10
42秒前
43秒前
纯真的笑珊完成签到,获得积分10
45秒前
活泼的烙完成签到 ,获得积分10
45秒前
46秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827115
求助须知:如何正确求助?哪些是违规求助? 3369456
关于积分的说明 10455991
捐赠科研通 3089115
什么是DOI,文献DOI怎么找? 1699644
邀请新用户注册赠送积分活动 817423
科研通“疑难数据库(出版商)”最低求助积分说明 770217