Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning

计算机科学 人工智能 卷积(计算机科学) 卷积神经网络 迭代重建 图像分辨率 像素 深度学习 人工神经网络 图像质量 计算机视觉 模式识别(心理学) 算法 图像(数学)
作者
Defu Qiu,Shengxiang Zhang,Ying Liu,Jianqing Zhu,Lixin Zheng
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:187: 105059-105059 被引量:87
标识
DOI:10.1016/j.cmpb.2019.105059
摘要

Abstract Background and objective With the rapid development of medical imaging and intelligent diagnosis, artificial intelligence methods have become a research hotspot of radiography processing technology in recent years. The low definition of knee magnetic resonance image texture seriously affects the diagnosis of knee osteoarthritis. This paper presents a super-resolution reconstruction method to address this problem. Methods In this paper, we propose an efficient medical image super-resolution (EMISR) method, in which we mainly adopted three hidden layers of super-resolution convolution neural network (SRCNN) and a sub-pixel convolution layer of efficient sub-pixel convolution neural network (ESPCN). The addition of the efficient sub-pixel convolutional layer in the hidden layer and the small network replacement consisting of concatenated convolutions to address low-resolution images but not high-resolution images are important. The EMISR method also uses cascaded small convolution kernels to improve reconstruction speed and deepen the convolution neural network to improve reconstruction quality. Results The proposed method is tested in the public dataset IDI, and the reconstruction quality of the algorithm is higher than that of the sparse coding-based network (SCN) method, the SRCNN method, and the ESPCN method (+ 2.306 dB, + 2.540 dB, + 1.089 dB improved); moreover, the reconstruction speed is faster than its counterparts (+ 4.272 s, + 1.967 s, and + 0.073 s improved). Conclusion The experimental results show that our EMISR framework has improved performance and greatly reduces the number of parameters and training time. Furthermore, the reconstructed image presents more details, and the edges are more complete. Therefore, the EMISR technique provides a more powerful medical analysis in knee osteoarthritis examinations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
genius发布了新的文献求助10
刚刚
1秒前
dwclongy完成签到,获得积分10
1秒前
852应助李离子采纳,获得10
1秒前
小宋同学发布了新的文献求助10
2秒前
2秒前
田様应助晚意采纳,获得10
2秒前
2秒前
小二郎应助xrt采纳,获得10
2秒前
2秒前
科研通AI6应助cici采纳,获得10
3秒前
3秒前
11发布了新的文献求助10
3秒前
又又发布了新的文献求助10
3秒前
bkagyin应助马房山小菜鸡采纳,获得10
3秒前
Lucas应助YY采纳,获得10
4秒前
冷酷开山发布了新的文献求助10
4秒前
4秒前
幻想小蜜蜂应助Foch采纳,获得10
5秒前
英俊的铭应助Foch采纳,获得30
5秒前
ding应助Foch采纳,获得10
5秒前
科目三应助明理的青寒采纳,获得10
5秒前
栎栎完成签到,获得积分10
5秒前
5秒前
种田的篱笆完成签到,获得积分10
5秒前
camell发布了新的文献求助10
6秒前
HBY发布了新的文献求助10
6秒前
6秒前
丹丹丹发布了新的文献求助10
7秒前
水松发布了新的文献求助30
7秒前
华仔应助naturehome采纳,获得10
7秒前
善学以致用应助zmy采纳,获得10
8秒前
8秒前
小痞子完成签到 ,获得积分10
8秒前
Jasper应助ay采纳,获得10
8秒前
科研小王完成签到,获得积分20
8秒前
31415926发布了新的文献求助10
8秒前
9秒前
杨世全完成签到,获得积分10
9秒前
懒羊羊发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506224
求助须知:如何正确求助?哪些是违规求助? 4601750
关于积分的说明 14478529
捐赠科研通 4535703
什么是DOI,文献DOI怎么找? 2485613
邀请新用户注册赠送积分活动 1468474
关于科研通互助平台的介绍 1440997