Research on Fault Detection for ZPW-2000A Jointless Track Circuit Based on Deep Belief Network Optimized by Improved Particle Swarm Optimization Algorithm

粒子群优化 计算机科学 断层(地质) 磁道(磁盘驱动器) 算法 人工智能 实时计算 操作系统 地质学 地震学
作者
Ziyuan Zheng,Shenghua Dai,Xuxu Xie
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 175981-175997 被引量:24
标识
DOI:10.1109/access.2020.3025628
摘要

With the rapid development of railway traffic, traffic safety has become a focus. The ZPW-2000A jointless track circuit is an important part of train control systems. Currently, the fault detection of the ZPW-2000A jointless track circuit still relies on the experience of maintenance personnel, which can introduce several problems, such as a low fault detection efficiency and large amounts of required labor. Although some artificial intelligence fault detection algorithms for the ZPW-2000A track circuit have been developed, their detection accuracy is not high enough to meet the needs of large-scale applications, and due to security requirements, the actual ZPW-2000A track circuit fault data cannot be directly obtained in large quantities. To solve these problems, an equivalent theoretical model of the Chinese ZPW-2000A jointless track circuit is proposed by using four-terminal network theory. Through this equivalent theoretical model, the original fault data were collected. Considering that the relationship between fault data and fault types of the ZPW-2000A jointless track circuit is not obvious, a deep belief network was designed to detect the fault modes of the ZPW-2000A jointless track circuit. In order to optimize the deep belief network performance, the particle swarm optimization algorithm optimized by the genetic algorithm (GAPSO) was selected to optimize the deep belief network. The simulation experiments indicated that the optimized deep belief network could achieve a 98.5% fault detection accuracy and a 98.6% F1 Score rate, which showed that the deep belief network optimization by the particle swarm optimization algorithm which was optimized by the genetic algorithm (GAPSO-DBN) model proposed in this paper, had high accuracy and robustness. The results show that it had higher accuracy and robustness than other fault detection methods, and it can greatly improve the level of ZPW-2000A track circuit fault detection in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的诗珊完成签到,获得积分10
1秒前
ym发布了新的文献求助10
1秒前
1秒前
善学以致用应助耳朵儿歌采纳,获得10
1秒前
小饼干完成签到,获得积分10
1秒前
meteor完成签到,获得积分10
2秒前
药学小团子完成签到,获得积分10
3秒前
圆圆完成签到,获得积分10
3秒前
wanci应助欠虐宝宝采纳,获得10
3秒前
肉肉完成签到,获得积分10
3秒前
Ari_Kun发布了新的文献求助10
3秒前
Coral完成签到,获得积分10
3秒前
冷静荠发布了新的文献求助10
3秒前
3秒前
luf完成签到,获得积分10
4秒前
YWR完成签到,获得积分10
4秒前
ZeyG完成签到,获得积分20
4秒前
JJ完成签到,获得积分10
5秒前
吴雩完成签到,获得积分10
6秒前
爱蜜莉亚QAQ完成签到,获得积分10
6秒前
舒心的秋荷完成签到 ,获得积分10
7秒前
漂泊1991应助指北针采纳,获得10
7秒前
圆圆发布了新的文献求助10
7秒前
8秒前
BCEMTZ完成签到,获得积分10
8秒前
完美世界应助坚守初心采纳,获得10
8秒前
念65完成签到,获得积分10
8秒前
Six_seven发布了新的文献求助10
8秒前
慕青应助JMrider采纳,获得10
8秒前
Masetti1完成签到 ,获得积分10
9秒前
9秒前
9秒前
QQ星完成签到,获得积分10
10秒前
10秒前
10秒前
贲孱发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
one完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257090
求助须知:如何正确求助?哪些是违规求助? 4419217
关于积分的说明 13755371
捐赠科研通 4292424
什么是DOI,文献DOI怎么找? 2355507
邀请新用户注册赠送积分活动 1351924
关于科研通互助平台的介绍 1312697