ECG Authentication Hardware Design With Low-Power Signal Processing and Neural Network Optimization With Low Precision and Structured Compression

计算机科学 生物识别 计算机硬件 认证(法律) 人工神经网络 可穿戴技术 人工智能 信号处理 指纹(计算) 可穿戴计算机 嵌入式系统 实时计算 数字信号处理 计算机安全
作者
Sai Kiran Cherupally,Shihui Yin,Deepak Kadetotad,Gaurav Srivastava,Chisung Bae,Sang Joon Kim,Jae-sun Seo
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 198-208 被引量:24
标识
DOI:10.1109/tbcas.2020.2974387
摘要

Biometrics such as facial features, fingerprint, and iris are being used increasingly in modern authentication systems. These methods are now popular and have found their way into many portable electronics such as smartphones, tablets, and laptops. Furthermore, the use of biometrics enables secure access to private medical data, now collected in wearable devices such as smartwatches. In this work, we present an accurate low-power device authentication system that employs electrocardiogram (ECG) signals as the biometric modality. The proposed ECG processor consists of front-end signal processing of ECG signals and back-end neural networks (NNs) for accurate authentication. The NNs are trained using a cost function that minimizes intra-individual distance over time and maximizes inter-individual distance. Efficient low-power hardware was implemented by using fixed coefficients for ECG signal pre-processing and by using joint optimization of low-precision and structured sparsity for the NNs. We implemented two instances of ECG authentication hardware with 4X and 8X structurally-compressed NNs in 65 nm LP CMOS, which consume low power of 62.37 μW and 75.41 μW for real-time ECG authentication with alow equal error rate of 1.36% and 1.21%, respectively, for a large 741-subject in-house ECG database. The hardware was evaluated at 10 kHz clock frequency and 1.2 V voltage supply.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓博完成签到,获得积分10
1秒前
耍酷的小海豚完成签到 ,获得积分10
3秒前
萝卜特二完成签到,获得积分10
3秒前
上善若水完成签到 ,获得积分10
4秒前
hj123完成签到,获得积分10
5秒前
sunyz应助田甜采纳,获得50
5秒前
好的昂完成签到,获得积分10
5秒前
小二郎应助Migrol采纳,获得10
7秒前
flymove完成签到,获得积分10
7秒前
Jimmybythebay完成签到,获得积分10
7秒前
弹指一挥间完成签到 ,获得积分10
9秒前
hulin_zjxu完成签到,获得积分10
10秒前
甜蜜鹭洋完成签到 ,获得积分10
11秒前
研友_nVNBVn完成签到,获得积分10
11秒前
14秒前
CodeCraft应助晓亮采纳,获得10
14秒前
紫陌完成签到,获得积分10
15秒前
世佳何完成签到,获得积分10
16秒前
蓝天碧海小西服完成签到,获得积分0
17秒前
李义天1212发布了新的文献求助30
17秒前
星海种花完成签到 ,获得积分10
17秒前
木樨完成签到,获得积分10
18秒前
朴实寻琴完成签到 ,获得积分10
18秒前
昏睡的妙梦完成签到 ,获得积分10
18秒前
20秒前
20秒前
城南烤地瓜完成签到 ,获得积分10
21秒前
23秒前
wuyuyu5413完成签到,获得积分10
23秒前
24秒前
篮孩子完成签到,获得积分10
24秒前
zzh完成签到 ,获得积分10
24秒前
25秒前
晓亮完成签到,获得积分10
25秒前
zhoushuai1a发布了新的文献求助10
25秒前
马小翠完成签到,获得积分10
25秒前
往返完成签到,获得积分10
25秒前
开心的太清完成签到,获得积分10
26秒前
fjhsg25完成签到,获得积分20
26秒前
曹沛岚完成签到,获得积分10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615