价(化学)
范畴变量
唤醒
面部表情
计算机科学
人工智能
机器学习
情绪分析
回归
情感计算
语音识别
心理学
统计
数学
社会心理学
量子力学
物理
作者
Nhu-Tai Do,Tram-Tran Nguyen-Quynh,Soo-Hyung Kim
标识
DOI:10.1109/fg47880.2020.00093
摘要
Affective behavior analysis plays an important role in human-computer interaction, customer marketing, health monitoring. ABAW Challenge and Aff-Wild2 dataset raise the new challenge for classifying basic emotions and regression valence-arousal value under in-the-wild environments. In this paper, we present an affective expression analysis model that deals with the above challenges. Our approach includes STAT and Temporal Module for fine-tuning again face feature model. We experimented on Aff-Wild2 dataset, a large-scale dataset for ABAW Challenge with the annotations for both the categorical and valence-arousal emotion. We achieved the expression score 0.543 and valence-arousal score 0.534 on the validation set.
科研通智能强力驱动
Strongly Powered by AbleSci AI