Radiomics in breast cancer classification and prediction

无线电技术 乳腺摄影术 医学 磁共振成像 乳腺癌 背景(考古学) 放射科 医学影像学 模式 乳房成像 金标准(测试) 癌症 医学物理学 内科学 生物 社会学 古生物学 社会科学
作者
Allegra Conti,Andrea Duggento,Iole Indovina,Maria Guerrisi,Nicola Toschi
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:72: 238-250 被引量:274
标识
DOI:10.1016/j.semcancer.2020.04.002
摘要

Breast Cancer (BC) is the common form of cancer in women. Its diagnosis and screening are usually performed through different imaging modalities such as mammography, magnetic resonance imaging and ultrasound. However, mammography and ultrasound-imaging techniques have limited sensitivity and specificity both in identifying lesions and in differentiating malign from benign lesions, especially in presence of dense breast parenchyma. Due to the higher resolution of magnetic resonance images, MRI represents the method with the higher specificity and sensitivity among all the available tools, in both lesions' identification and diagnosis. However, especially for diagnosis, even MRI has limitations that are only partially solved if combined with mammography. Unfortunately, due to the limits of all these imaging tools, in order to have a certain diagnosis, patients often receive painful and costly bioptics procedures. In this context, several computational approaches have been developed to increase sensitivity, while maintaining the same specificity, in BC diagnosis and screening. Amongst these, radiomics has been increasingly gaining ground in oncology to improve cancer diagnosis, prognosis and treatment. Radiomics derives multiple quantitative features from single or multiple medical imaging modalities, highlighting image traits which are not visible to the naked eye and hence significantly augmenting the discriminatory and predictive potential of medical imaging. This review article aims to summarize the state of the art in radiomics-based BC research. The dominating evidence extracted from the literature points towards a high potential of radiomics in disentangling malignant from benign breast lesions, classifying BC types and grades and also in predicting treatment response and recurrence risk. In the era of personalized medicine, radiomics has the potential to improve diagnosis, prognosis, prediction, monitoring, image-based intervention, and assessment of therapeutic response in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一笑发布了新的文献求助10
刚刚
光电很亮发布了新的文献求助10
1秒前
1秒前
LRISEM发布了新的文献求助10
5秒前
5秒前
外向芫发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
9秒前
10秒前
Ciyuan发布了新的文献求助10
12秒前
外向芫完成签到,获得积分10
12秒前
华仔应助qianqian采纳,获得10
13秒前
Xander发布了新的文献求助10
14秒前
浊人完成签到,获得积分10
14秒前
wanci应助健康的绮晴采纳,获得10
14秒前
xiaostou发布了新的文献求助10
14秒前
believe杨完成签到,获得积分10
15秒前
Qq完成签到 ,获得积分10
15秒前
17秒前
小恐龙完成签到,获得积分10
17秒前
18秒前
19秒前
9999完成签到,获得积分10
19秒前
风清扬应助Nancy采纳,获得30
20秒前
崩溃小魔仙完成签到,获得积分10
21秒前
21秒前
bibibi完成签到 ,获得积分10
21秒前
jxx完成签到 ,获得积分10
22秒前
共享精神应助Ciyuan采纳,获得10
22秒前
gkw发布了新的文献求助10
22秒前
hakunamatata完成签到 ,获得积分10
23秒前
西猫发布了新的文献求助10
25秒前
小呆毛完成签到 ,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
Xander完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284808
求助须知:如何正确求助?哪些是违规求助? 3812236
关于积分的说明 11941497
捐赠科研通 3458793
什么是DOI,文献DOI怎么找? 1896885
邀请新用户注册赠送积分活动 945544
科研通“疑难数据库(出版商)”最低求助积分说明 849342