Radiomics in breast cancer classification and prediction

无线电技术 乳腺摄影术 医学 磁共振成像 乳腺癌 背景(考古学) 放射科 医学影像学 模式 乳房成像 金标准(测试) 癌症 医学物理学 内科学 生物 社会学 古生物学 社会科学
作者
Allegra Conti,Andrea Duggento,Iole Indovina,Maria Guerrisi,Nicola Toschi
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:72: 238-250 被引量:357
标识
DOI:10.1016/j.semcancer.2020.04.002
摘要

Breast Cancer (BC) is the common form of cancer in women. Its diagnosis and screening are usually performed through different imaging modalities such as mammography, magnetic resonance imaging and ultrasound. However, mammography and ultrasound-imaging techniques have limited sensitivity and specificity both in identifying lesions and in differentiating malign from benign lesions, especially in presence of dense breast parenchyma. Due to the higher resolution of magnetic resonance images, MRI represents the method with the higher specificity and sensitivity among all the available tools, in both lesions' identification and diagnosis. However, especially for diagnosis, even MRI has limitations that are only partially solved if combined with mammography. Unfortunately, due to the limits of all these imaging tools, in order to have a certain diagnosis, patients often receive painful and costly bioptics procedures. In this context, several computational approaches have been developed to increase sensitivity, while maintaining the same specificity, in BC diagnosis and screening. Amongst these, radiomics has been increasingly gaining ground in oncology to improve cancer diagnosis, prognosis and treatment. Radiomics derives multiple quantitative features from single or multiple medical imaging modalities, highlighting image traits which are not visible to the naked eye and hence significantly augmenting the discriminatory and predictive potential of medical imaging. This review article aims to summarize the state of the art in radiomics-based BC research. The dominating evidence extracted from the literature points towards a high potential of radiomics in disentangling malignant from benign breast lesions, classifying BC types and grades and also in predicting treatment response and recurrence risk. In the era of personalized medicine, radiomics has the potential to improve diagnosis, prognosis, prediction, monitoring, image-based intervention, and assessment of therapeutic response in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
霜降发布了新的文献求助10
2秒前
2秒前
桃李完成签到,获得积分10
3秒前
yangmanjuan完成签到,获得积分10
3秒前
chem001发布了新的文献求助10
6秒前
dazhi发布了新的文献求助10
6秒前
Xxx发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
11秒前
FnDs完成签到,获得积分10
12秒前
stk完成签到,获得积分10
12秒前
搜集达人应助miosha采纳,获得10
13秒前
jwb711发布了新的文献求助10
14秒前
小吴同学发布了新的文献求助10
14秒前
15秒前
十一玮发布了新的文献求助10
16秒前
chem001完成签到,获得积分10
18秒前
天天快乐应助小榕采纳,获得10
18秒前
19秒前
小鱼完成签到,获得积分10
20秒前
Ariel完成签到,获得积分10
20秒前
SciGPT应助zxczxc采纳,获得10
20秒前
在水一方应助jwb711采纳,获得10
21秒前
23秒前
23秒前
asdfzxcv应助rio采纳,获得10
23秒前
24秒前
26秒前
爱听歌的烤鸡完成签到,获得积分10
27秒前
风趣惜文发布了新的文献求助20
27秒前
dazhi完成签到,获得积分10
28秒前
马先森完成签到 ,获得积分10
29秒前
tuanheqi应助hhhhh采纳,获得150
29秒前
30秒前
缥缈斓完成签到,获得积分10
30秒前
小马甲应助pear采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638207
求助须知:如何正确求助?哪些是违规求助? 4744936
关于积分的说明 15001390
捐赠科研通 4796306
什么是DOI,文献DOI怎么找? 2562532
邀请新用户注册赠送积分活动 1521914
关于科研通互助平台的介绍 1481798