Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT

计算机科学 物联网 入侵检测系统 计算机安全 信息隐私 互联网隐私
作者
Pedro Ruzafa-Alcazar,Pablo Fernández Saura,Enrique Marmol-Campos,Aurora González-Vidal,José L. Hernández-Ramos,Jorge Bernal Bernabé,Antonio Skármeta
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1145-1154 被引量:87
标识
DOI:10.1109/tii.2021.3126728
摘要

Federated learning (FL) has attracted significant interest given its prominent advantages and applicability in many scenarios. However, it has been demonstrated that sharing updated gradients/weights during the training process can lead to privacy concerns. In the context of the Internet of Things (IoT), this can be exacerbated due to intrusion detection systems (IDSs), which are intended to detect security attacks by analyzing the devices' network traffic. Our work provides a comprehensive evaluation of differential privacy techniques, which are applied during the training of an FL-enabled IDS for industrial IoT. Unlike previous approaches, we deal with nonindependent and identically distributed data over the recent ToN_IoT dataset, and compare the accuracy obtained considering different privacy requirements and aggregation functions, namely FedAvg and the recently proposed Fed+. According to our evaluation, the use of Fed+ in our setting provides similar results even when noise is included in the federated training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
出离离离完成签到 ,获得积分10
1秒前
郑浩发布了新的文献求助10
3秒前
感动访天完成签到,获得积分20
3秒前
3秒前
公孙世往发布了新的文献求助10
3秒前
DUBUYINKE完成签到,获得积分10
5秒前
大苏子哥哥完成签到,获得积分10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
12秒前
852应助小圭采纳,获得10
12秒前
归尘应助vsvsgo采纳,获得10
14秒前
热电CAT完成签到,获得积分10
14秒前
15秒前
Tsuki应助非而者厚采纳,获得10
15秒前
yz关注了科研通微信公众号
15秒前
KX发布了新的文献求助30
15秒前
希望天下0贩的0应助Yvoone采纳,获得10
16秒前
初晨发布了新的文献求助10
16秒前
勤奋谷秋完成签到 ,获得积分10
16秒前
18秒前
南有乔木完成签到 ,获得积分10
19秒前
Danielle完成签到,获得积分10
19秒前
小SU哥完成签到,获得积分10
19秒前
hhh发布了新的文献求助10
21秒前
小二郎应助茜茜弗斯采纳,获得10
21秒前
恰恰恰发布了新的文献求助30
21秒前
Eraaaaa发布了新的文献求助10
21秒前
22秒前
眼睛大的念桃完成签到,获得积分10
22秒前
科研通AI6.1应助简化为采纳,获得10
23秒前
FashionBoy应助天涯采纳,获得10
23秒前
23秒前
dll关闭了dll文献求助
24秒前
25秒前
Ava应助王王采纳,获得10
25秒前
Aman发布了新的文献求助10
27秒前
妩媚的琦发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793927
求助须知:如何正确求助?哪些是违规求助? 5752613
关于积分的说明 15487455
捐赠科研通 4920852
什么是DOI,文献DOI怎么找? 2649153
邀请新用户注册赠送积分活动 1596439
关于科研通互助平台的介绍 1550942