A Review on Recent Advances in Vision-based Defect Recognition towards Industrial Intelligence

人工智能 计算机科学 机器视觉 特征(语言学) 数据科学 工程类 语言学 哲学
作者
Yiping Gao,Xinyu Li,Xi Vincent Wang,Lihui Wang,Liang Gao
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:62: 753-766 被引量:45
标识
DOI:10.1016/j.jmsy.2021.05.008
摘要

In modern manufacturing, vision-based defect recognition is an essential technology to guarantee product quality, and it plays an important role in industrial intelligence. With the developments of industrial big data, defect images can be captured by ubiquitous sensors. And, how to realize accuracy recognition has become a research hotspot. In the past several years, many vision-based defect recognition methods have been proposed, and some newly-emerged techniques, such as deep learning, have become increasingly popular and have addressed many challenging problems effectively. Hence, a comprehensive review is urgently needed, and it can promote the development and bring some insights in this area. This paper surveys the recent advances in vision-based defect recognition and presents a systematical review from a feature perspective. This review divides the recent methods into designed-feature based methods and learned-feature based methods, and summarizes the advantages, disadvantages and application scenarios. Furthermore, this paper also summarizes the performance metrics for vision-based defect recognition methods. And some challenges and development trends are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
失眠醉易应助iiiid采纳,获得20
1秒前
科研通AI5应助宝宝时代采纳,获得10
3秒前
小马甲应助maplesirup采纳,获得10
4秒前
七包辣条发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助beibei采纳,获得10
8秒前
挤你太美完成签到,获得积分20
8秒前
10秒前
江添发布了新的文献求助10
10秒前
10秒前
小学生库里完成签到,获得积分10
12秒前
1376完成签到,获得积分20
12秒前
13秒前
14秒前
nozero应助Peter采纳,获得50
14秒前
田様应助David采纳,获得20
14秒前
汉堡包应助挤你太美采纳,获得10
14秒前
科研通AI5应助七包辣条采纳,获得10
15秒前
文艺代灵发布了新的文献求助10
15秒前
15秒前
15秒前
上官若男应助桃青采纳,获得10
16秒前
科研小谢发布了新的文献求助10
17秒前
王小能完成签到,获得积分10
17秒前
18秒前
look完成签到,获得积分10
18秒前
xxxxxx完成签到,获得积分20
18秒前
宝宝时代发布了新的文献求助10
18秒前
19秒前
季不住完成签到,获得积分10
19秒前
20秒前
王小能发布了新的文献求助10
21秒前
领导范儿应助mmmz采纳,获得10
21秒前
jw完成签到,获得积分10
21秒前
xxxxxx发布了新的文献求助10
22秒前
11dcc完成签到,获得积分20
23秒前
24秒前
25秒前
Jasper应助MeSs采纳,获得10
29秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829269
求助须知:如何正确求助?哪些是违规求助? 3371975
关于积分的说明 10470047
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818284
科研通“疑难数据库(出版商)”最低求助积分说明 770765