Prediction of Bedridden Duration of Hospitalized Patients by Machine Learning Based on EMRs at Admission

逻辑回归 支持向量机 机器学习 人工智能 医学 梯度升压 算法 计算机科学 随机森林
作者
Weijie Lin,Xiulin Tian,Xin Lü,Dongfang Ma,Yifan Wu,Jianqiao Hong,Ruijian Yan,Gang Feng,Zhiyuan Cheng
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:40 (4): 251-257 被引量:2
标识
DOI:10.1097/cin.0000000000000765
摘要

Being bedridden is a frequent comorbid condition that leads to a series of complications in clinical practice. The present study aimed to predict bedridden duration of hospitalized patients based on EMR at admission by machine learning. The medical data of 4345 hospitalized patients who were bedridden for at least 24 hours after admission were retrospectively collected. After preprocessing of the data, features for modeling were selected by support vector machine recursive feature elimination. Thereafter, logistic regression, support vector machine, and extreme gradient boosting algorithms were adopted to predict the bedridden duration. The feasibility and efficacy of above models were evaluated by performance indicators. Our results demonstrated that the most important features related to bedridden duration were Charlson Comorbidity Index, age, bedridden duration before admission, mobility capability, and perceptual ability. The extreme gradient boosting algorithm showed the best performance (accuracy, 0.797; area under the curve, 0.841) when compared with support vector machine (accuracy, 0.771; area under the curve, 0.803) and logistic regression (accuracy, 0.765; area under the curve, 0.809) algorithms. Meanwhile, the extreme gradient boosting algorithm had a higher sensitivity (0.856), specificity (0.650), and F1 score (0.858) than that of support vector machine algorithm (0.843, 0.589, and 0.841) and logistic regression (0.852, 0.545, and 0.839), respectively. These findings indicate that machine learning based on EMRs at admission is a feasible avenue to predict the bedridden duration. The extreme gradient boosting algorithm shows great potential for further clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单小土豆完成签到,获得积分10
刚刚
stone完成签到,获得积分10
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
过分着迷发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
仁爱静芙发布了新的文献求助10
2秒前
qweerrtt完成签到,获得积分10
2秒前
结实寄文发布了新的文献求助10
2秒前
ytxstrawberry完成签到,获得积分10
2秒前
阳光女孩发布了新的文献求助10
3秒前
动听小小完成签到,获得积分10
3秒前
彼得大帝完成签到,获得积分10
3秒前
眯眯眼的海完成签到,获得积分10
5秒前
自信寒蕾发布了新的文献求助10
5秒前
5秒前
zanedou完成签到,获得积分10
6秒前
jiayou完成签到,获得积分10
6秒前
6秒前
上官若男应助wzj采纳,获得10
6秒前
天天向上完成签到,获得积分10
7秒前
小鱼完成签到,获得积分10
7秒前
科演小能手完成签到,获得积分20
8秒前
8秒前
Lignin应助何晏采纳,获得10
8秒前
Bacian发布了新的文献求助10
9秒前
利好完成签到 ,获得积分10
9秒前
大个应助每天都困采纳,获得10
9秒前
海天使完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
vchen0621完成签到,获得积分0
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924643
求助须知:如何正确求助?哪些是违规求助? 3469385
关于积分的说明 10957319
捐赠科研通 3198728
什么是DOI,文献DOI怎么找? 1767287
邀请新用户注册赠送积分活动 856769
科研通“疑难数据库(出版商)”最低求助积分说明 795632