清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Bedridden Duration of Hospitalized Patients by Machine Learning Based on EMRs at Admission

逻辑回归 支持向量机 机器学习 人工智能 医学 梯度升压 算法 计算机科学 随机森林
作者
Weijie Lin,Xiulin Tian,Xin Lü,Dongfang Ma,Yifan Wu,Jianqiao Hong,Ruijian Yan,Gang Feng,Zhiyuan Cheng
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:40 (4): 251-257 被引量:2
标识
DOI:10.1097/cin.0000000000000765
摘要

Being bedridden is a frequent comorbid condition that leads to a series of complications in clinical practice. The present study aimed to predict bedridden duration of hospitalized patients based on EMR at admission by machine learning. The medical data of 4345 hospitalized patients who were bedridden for at least 24 hours after admission were retrospectively collected. After preprocessing of the data, features for modeling were selected by support vector machine recursive feature elimination. Thereafter, logistic regression, support vector machine, and extreme gradient boosting algorithms were adopted to predict the bedridden duration. The feasibility and efficacy of above models were evaluated by performance indicators. Our results demonstrated that the most important features related to bedridden duration were Charlson Comorbidity Index, age, bedridden duration before admission, mobility capability, and perceptual ability. The extreme gradient boosting algorithm showed the best performance (accuracy, 0.797; area under the curve, 0.841) when compared with support vector machine (accuracy, 0.771; area under the curve, 0.803) and logistic regression (accuracy, 0.765; area under the curve, 0.809) algorithms. Meanwhile, the extreme gradient boosting algorithm had a higher sensitivity (0.856), specificity (0.650), and F1 score (0.858) than that of support vector machine algorithm (0.843, 0.589, and 0.841) and logistic regression (0.852, 0.545, and 0.839), respectively. These findings indicate that machine learning based on EMRs at admission is a feasible avenue to predict the bedridden duration. The extreme gradient boosting algorithm shows great potential for further clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助爱啃大虾采纳,获得10
5秒前
甜美冥茗完成签到 ,获得积分10
10秒前
57秒前
XD824发布了新的文献求助10
1分钟前
zoey完成签到,获得积分20
1分钟前
zoey发布了新的文献求助10
1分钟前
foyefeng完成签到 ,获得积分10
1分钟前
濮阳灵竹完成签到,获得积分10
1分钟前
深情安青应助李小猫采纳,获得10
1分钟前
1分钟前
李小猫发布了新的文献求助10
1分钟前
小小完成签到 ,获得积分10
1分钟前
稻子完成签到 ,获得积分10
3分钟前
Zer完成签到,获得积分10
3分钟前
方白秋完成签到,获得积分10
3分钟前
xyliu完成签到 ,获得积分20
3分钟前
善学以致用应助小羊同学采纳,获得10
3分钟前
跳跃的鹏飞完成签到 ,获得积分10
4分钟前
可爱的函函应助lysun采纳,获得10
4分钟前
小强完成签到 ,获得积分0
4分钟前
5分钟前
光合作用完成签到,获得积分10
5分钟前
小羊同学发布了新的文献求助10
5分钟前
5分钟前
田様应助小羊同学采纳,获得10
5分钟前
lysun发布了新的文献求助10
5分钟前
小羊同学完成签到,获得积分10
6分钟前
无花果应助科研通管家采纳,获得10
6分钟前
sherrt发布了新的文献求助10
6分钟前
Cindy发布了新的文献求助10
6分钟前
Cindy完成签到,获得积分10
6分钟前
sherrt完成签到,获得积分10
6分钟前
年轻的凝云完成签到 ,获得积分10
6分钟前
Chen完成签到,获得积分10
6分钟前
香蕉完成签到 ,获得积分10
6分钟前
传奇3应助joycelin采纳,获得10
7分钟前
8分钟前
阿辉ai做科研完成签到,获得积分10
8分钟前
Emperor完成签到 ,获得积分0
8分钟前
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784804
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244252
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524