A systematic review on overfitting control in shallow and deep neural networks

过度拟合 计算机科学 人工智能 机器学习 深度学习 卷积神经网络 人工神经网络
作者
Mohammad Mahdi Bejani,Mehdi Ghatee
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:54 (8): 6391-6438 被引量:326
标识
DOI:10.1007/s10462-021-09975-1
摘要

Intelligent Transportation Systems (ITS) are much correlated with data science mechanisms. Among the different correlation branches, this paper focuses on the neural network learning models. Some of the considered models are shallow and they get some user-defined features and learn the relationship, while deep models extract the necessary features before learning by themselves. Both of these paradigms are utilized in the recent intelligent transportation systems (ITS) to support decision-making by the aid of different operations such as frequent patterns mining, regression, clustering, and classification. When these learners cannot generalize the results and just memorize the training samples, they fail to support the necessities. In these cases, the testing error is bigger than the training error. This phenomenon is addressed as overfitting in the literature. Because, this issue decreases the reliability of learning systems, in ITS applications, we cannot use such over-fitted machine learning models for different tasks such as traffic prediction, the signal controlling, safety applications, emergency responses, mode detection, driving evaluation, etc. Besides, deep learning models use a great number of hyper-parameters, the overfitting in deep models is more attention. To solve this problem, the regularized learning models can be followed. The aim of this paper is to review the approaches presented to regularize the overfitting in different categories of ITS studies. Then, we give a case study on driving safety that uses a regularized version of the convolutional neural network (CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha完成签到,获得积分10
1秒前
深海soda完成签到,获得积分10
1秒前
MG_aichy完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
jinjinjin完成签到,获得积分10
4秒前
haha发布了新的文献求助30
4秒前
5秒前
帅哥完成签到,获得积分10
5秒前
璐璇完成签到,获得积分10
5秒前
朝菌完成签到,获得积分10
5秒前
5秒前
czx完成签到,获得积分10
5秒前
fcgcgfcgf完成签到,获得积分20
6秒前
6秒前
SYLH应助dupeipei采纳,获得10
6秒前
6秒前
Ivyxie发布了新的文献求助30
6秒前
xuuuuu发布了新的文献求助10
6秒前
走着走着就散了完成签到,获得积分10
7秒前
亢kxh发布了新的文献求助10
7秒前
飞快的雅青完成签到 ,获得积分10
9秒前
HUSH994完成签到,获得积分10
9秒前
zzmmyygg完成签到,获得积分20
9秒前
聪慧的从雪完成签到 ,获得积分10
10秒前
邓布利多发布了新的文献求助20
10秒前
11秒前
何以解忧完成签到,获得积分10
11秒前
SYLH应助林黛玉倒拔垂杨柳采纳,获得10
12秒前
12秒前
脑洞疼应助典雅的俊驰采纳,获得10
12秒前
兴奋的白秋完成签到,获得积分10
12秒前
xcc完成签到,获得积分10
12秒前
13秒前
霸王爱吃面给霸王爱吃面的求助进行了留言
13秒前
三国杀启动完成签到,获得积分10
13秒前
平淡思雁完成签到,获得积分10
13秒前
orixero应助郑zhenglanyou采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730