Dual Distance Center Loss: The Improved Center Loss That Can Run Without the Combination of Softmax Loss, an Application for Vehicle Re-Identification and Person Re-Identification

Softmax函数 计算机科学 路径损耗 鉴定(生物学) 人工智能 特征(语言学) 欧几里德距离 超球体 模式识别(心理学) 人工神经网络 电信 语言学 哲学 植物 无线 生物
作者
Zhijun Hu,Yong Xu,S. P. Raja,Guanghai Liu,Jie Wen,Lilei Sun,Lian Wu,Xianjing Cheng
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 1345-1358 被引量:7
标识
DOI:10.1109/tcss.2021.3127561
摘要

Center loss is widely used as a supervision tool in deep learning method. However, the center loss also has some shortcomings, the most important of which is that it must be combined with softmax loss to run well. In this article, we sum up five shortcomings of center loss and solve all of them by proposing a dual distance center loss (DDCL). Compared with center loss, DDCL can run without the combination of softmax to supervise training the model. In addition, we verify the inconsistency between the proposed DDCL and softmax loss in the feature space. To be specifically, we add the Pearson distance on the basis of the Euclidean distance to the same center, which makes all features of the same class be confined to the intersection of a hypersphere and a hypercone in the feature space, strengthens the intraclass compactness of the center loss, and enhances the generalization ability of center loss. Moreover, by designing a Euclidean distance threshold between all center pairs, we not only strengthen the interclass separability of center loss, but also make the center loss (or DDCL) works well without the combination of softmax loss. We verify the effectiveness of DDCL in four datasets, two of which are widely used in the field of vehicle re-identification named VeRi-776 dataset and VehicleID dataset, and two other datasets are widely used in the field of person re-identification named Market1501 dataset and MSMT17 dataset. The experimental results of the proposed DDCL exceed that of the softmax loss in all the four datasets, indicating that our proposed method not only can run without the combination of softmax, but also has a high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kento发布了新的文献求助50
1秒前
pang乎乎完成签到 ,获得积分20
6秒前
zenabia完成签到 ,获得积分10
10秒前
drfang完成签到 ,获得积分10
10秒前
无花果应助daladidala采纳,获得10
14秒前
sunflower完成签到,获得积分0
19秒前
老迟到的翠容完成签到,获得积分10
21秒前
坦率的刺猬完成签到,获得积分10
22秒前
23秒前
xiaofenzi完成签到,获得积分10
23秒前
jimmy_bytheway完成签到,获得积分0
23秒前
小程完成签到 ,获得积分10
24秒前
daladidala发布了新的文献求助10
27秒前
林药师完成签到,获得积分10
30秒前
HC完成签到 ,获得积分10
32秒前
Double_N完成签到,获得积分10
33秒前
小叔叔完成签到 ,获得积分10
36秒前
至若春和景明完成签到,获得积分10
37秒前
一轮明月完成签到 ,获得积分10
44秒前
Air完成签到 ,获得积分10
46秒前
拼搏的白云完成签到,获得积分10
48秒前
漫漫楚威风完成签到 ,获得积分10
55秒前
雾见春完成签到 ,获得积分10
56秒前
哇次阿普曼完成签到 ,获得积分10
57秒前
开心友儿完成签到,获得积分10
1分钟前
性感母蟑螂完成签到 ,获得积分10
1分钟前
小熊完成签到 ,获得积分10
1分钟前
查丽完成签到 ,获得积分10
1分钟前
俏皮的采波完成签到,获得积分10
1分钟前
Slemon完成签到,获得积分10
1分钟前
tennisgirl完成签到 ,获得积分10
1分钟前
Kenzonvay完成签到,获得积分10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
求助完成签到,获得积分10
1分钟前
Kenzonvay发布了新的文献求助10
1分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845650
求助须知:如何正确求助?哪些是违规求助? 3387867
关于积分的说明 10550775
捐赠科研通 3108492
什么是DOI,文献DOI怎么找? 1712872
邀请新用户注册赠送积分活动 824532
科研通“疑难数据库(出版商)”最低求助积分说明 774877