Combining first prediction time identification and time-series feature window for remaining useful life prediction of rolling bearings with limited data

峰度 方位(导航) 系列(地层学) 鉴定(生物学) 一般化 时间序列 计算机科学 特征(语言学) 工程类 数据挖掘 人工智能 机器学习 统计 数学 数学分析 哲学 古生物学 生物 植物 语言学
作者
Hai Li,Chaoqun Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:238 (2): 274-290 被引量:5
标识
DOI:10.1177/1748006x221147441
摘要

Limited data are common in the problem of remaining life prediction (RUL) of rolling bearings, and the distribution of degradation data of rolling bearings under different working conditions is quite different, which makes it difficult to predict the RUL of rolling bearings with limited data. To address this issue, this study combines first prediction time identification (FPT) and time-series feature window (TSFW) for predicting the RUL of rolling bearings with limited data. Firstly, the proper first prediction time is identified by a novel FPT identification method considering root mean square and Kurtosis simultaneously. Subsequently, to accurately capture the sequential characteristics of bearing degradation data, the TSFW is constructed and then adaptively compressed considering degradation factor that is derived mathematically. Based on this, this study employs multi-step ahead rolling prediction strategy with degradation factor from FPT to reveal the future degradation trend and then predict the bearing RUL. Finally, the feasibility and generalization of the proposed method under limited data is validated by carrying out several rolling bearing experiments, and the prediction errors for two representative bearings are 14.46% and 8.06%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微信研友完成签到,获得积分10
1秒前
李爱国应助懒得可爱采纳,获得10
1秒前
1秒前
英姑应助vickeylea采纳,获得10
2秒前
3秒前
3秒前
Willy完成签到,获得积分10
4秒前
迷路白曼发布了新的文献求助10
4秒前
5秒前
ayuan完成签到,获得积分10
6秒前
ChaiN完成签到,获得积分10
6秒前
诗蕊发布了新的文献求助10
6秒前
6秒前
邓彩姚完成签到,获得积分10
6秒前
Owen应助ZYC007采纳,获得10
7秒前
8秒前
8秒前
动听的琴完成签到,获得积分10
8秒前
8秒前
9秒前
yangxiaomei发布了新的文献求助10
9秒前
Aom完成签到,获得积分10
9秒前
11秒前
十有五应助ali采纳,获得10
12秒前
13秒前
matmoon发布了新的文献求助10
13秒前
13秒前
苏蛰发布了新的文献求助10
14秒前
赵苏州发布了新的文献求助30
15秒前
15秒前
彭于晏应助哇啦哇啦采纳,获得10
15秒前
monly应助zhao采纳,获得10
15秒前
xiaozhang发布了新的文献求助10
17秒前
CA发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
聽風发布了新的文献求助30
23秒前
zzh0409km发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495883
求助须知:如何正确求助?哪些是违规求助? 3947764
关于积分的说明 12240949
捐赠科研通 3605432
什么是DOI,文献DOI怎么找? 1983178
邀请新用户注册赠送积分活动 1019797
科研通“疑难数据库(出版商)”最低求助积分说明 912314