Electrolyte optimization for sodium-sulfur batteries

多硫化物 电解质 硫黄 二甲氧基乙烷 二聚体 碳酸丙烯酯 阴极 聚丙烯腈 锂硫电池 化学工程 化学 材料科学 无机化学 溶剂 聚合物 有机化学 电极 物理化学 工程类
作者
Janak Basel,Nawraj Sapkota,Mihir Parekh,Apparao M. Rao
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (12) 被引量:8
标识
DOI:10.1063/5.0193318
摘要

Due to high theoretical capacity, low cost, and high energy density, sodium-sulfur (Na-S) batteries are attractive for next-generation grid-level storage systems. However, the polysulfide shuttle leads to a rapid capacity loss in sodium-sulfur batteries with elemental sulfur as the cathode material. Most previous studies have focused on nanoengineering methods for creating stable Na anodes and S cathodes. A proven strategy to mitigate the shuttle effect is to covalently bond elemental sulfur to a polymeric backbone and use it as the active ingredient instead of elemental sulfur. In this regard, we synthesized sulfurized polyacrylonitrile (SPAN) cathodes. In addition to the electrodes, electrolyte selection is crucial for sodium sulfur batteries with long cycle life, high energy densities, and rate capabilities. Thus, we explored various electrolyte compositions; specifically organic solvents such as propylene carbonate (PC), dioxolane (DOL), dimethoxyethane, and diglyme (DIG) were mixed in different proportions to create electrolyte solvents with both ethers and carbonates to promote the formation of bilateral solid electrolyte interphase (SEI). This bilateral SEI strategy has been employed to prevent polysulfide shuttle and dendrite growth in lithium-sulfur batteries. Sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was chosen as the electrolyte salt. The prepared coin cells were tested for rate capability and capacity retention, and the results have been analyzed. High initial discharge capacity of ∼740 mAh g−1 with ∼66% capacity retention over 100 cycles was observed for 0.8M NaTFSI in PC50DOL50 (v/v). The cell with 0.8M NaTFSI in PC50DIG50 has exhibited strong capacity retention of 74.60% with excellent Coulombic efficiency of 99%. Molecular dynamics (MD) simulations were carried out to further understand these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助曼陀罗华采纳,获得10
2秒前
aba1发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Chen完成签到,获得积分10
6秒前
8秒前
陈yunchuan完成签到,获得积分10
8秒前
慎独完成签到 ,获得积分10
10秒前
10秒前
a成完成签到,获得积分10
11秒前
LL完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
yhw完成签到,获得积分10
14秒前
愉快半烟发布了新的文献求助10
16秒前
大气无声完成签到,获得积分10
16秒前
RuiminXie发布了新的文献求助10
18秒前
Chen发布了新的文献求助10
18秒前
求助人员应助yhw采纳,获得10
18秒前
19秒前
Dennis_Ye完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
搜集达人应助hyw采纳,获得10
24秒前
李健的粉丝团团长应助zy采纳,获得10
24秒前
25秒前
灰太狼完成签到,获得积分10
25秒前
香蕉觅云应助天真山柳采纳,获得10
26秒前
糖糖发布了新的文献求助10
26秒前
qaq关闭了qaq文献求助
27秒前
领导范儿应助LXF采纳,获得10
27秒前
大个应助胡英宇采纳,获得10
28秒前
yhp完成签到 ,获得积分10
30秒前
fangyuan应助犹豫的踏歌采纳,获得10
30秒前
华仔应助大气无声采纳,获得10
31秒前
31秒前
hrj完成签到,获得积分10
32秒前
希望天下0贩的0应助仲谋采纳,获得10
32秒前
33秒前
2818完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679489
求助须知:如何正确求助?哪些是违规求助? 4990946
关于积分的说明 15169676
捐赠科研通 4839270
什么是DOI,文献DOI怎么找? 2593233
邀请新用户注册赠送积分活动 1546348
关于科研通互助平台的介绍 1504472