零(语言学)
数学
特征向量
卷积(计算机科学)
纯数学
数学分析
物理
计算机科学
量子力学
人工智能
语言学
人工神经网络
哲学
标识
DOI:10.1142/s1793042124500775
摘要
By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for [Formula: see text]. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for [Formula: see text]. Furthermore, we present a conditional result regarding sign changes of these coefficients.
科研通智能强力驱动
Strongly Powered by AbleSci AI