Predicting Future Disorders via Temporal Knowledge Graphs and Medical Ontologies

计算机科学 知识图 医学知识 数据科学 情报检索 人工智能 自然语言处理 医学 医学教育
作者
Marco Postiglione,Daniel Bean,Željko Kraljević,Richard Dobson,Vincenzo Moscato
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4238-4248 被引量:5
标识
DOI:10.1109/jbhi.2024.3390419
摘要

Despite the vast potential for insights and value present in Electronic Health Records (EHRs), it is challenging to fully leverage all the available information, particularly that contained in the free-text data written by clinicians describing the health status of patients. The utilization of Named Entity Recognition and Linking tools allows not only for the structuring of information contained within free-text data, but also for the integration with medical ontologies, which may prove highly beneficial for the analysis of patient medical histories with the aim of forecasting future medical outcomes, such as the diagnosis of a new disorder. In this paper, we propose MedTKG, a Temporal Knowledge Graph (TKG) framework that incorporates both the dynamic information of patient clinical histories and the static information of medical ontologies. The TKG is used to model a medical history as a series of snapshots at different points in time, effectively capturing the dynamic nature of the patient's health status, while a static graph is used to model the hierarchies of concepts extracted from domain ontologies. The proposed method aims to predict future disorders by identifying missing objects in the quadruple 〈s, r, ?, t 〉, where s and r denote the patient and the disorder relation type, respectively, and t is the timestamp of the query. The method is evaluated on clinical notes extracted from MIMIC-III and demonstrates the effectiveness of the TKG framework in predicting future disorders and of medical ontologies in improving its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩韩发布了新的文献求助10
1秒前
勘察加锅炉房完成签到,获得积分10
1秒前
2秒前
@A发布了新的文献求助10
2秒前
WW发布了新的文献求助10
3秒前
3秒前
小黑魔仙发布了新的文献求助10
4秒前
认真读文献3302完成签到,获得积分20
5秒前
聪111应助山南水北采纳,获得20
5秒前
liguyi完成签到,获得积分10
6秒前
Selina完成签到 ,获得积分10
6秒前
JamesPei应助王志杰采纳,获得10
7秒前
大方芾完成签到,获得积分10
8秒前
缥缈静珊完成签到,获得积分10
8秒前
LLL完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
Akim应助幸运符采纳,获得10
10秒前
科研通AI6应助胡天硕采纳,获得10
10秒前
离个大谱发布了新的文献求助10
10秒前
大个应助ZJRerrr采纳,获得10
11秒前
001完成签到,获得积分10
11秒前
大个应助忧郁难胜采纳,获得10
11秒前
11秒前
ycp完成签到,获得积分10
13秒前
14秒前
田様应助米酒汤圆采纳,获得10
15秒前
英姑应助爱吃香菜采纳,获得10
15秒前
16秒前
17秒前
华仔应助@A采纳,获得10
17秒前
跳跃豆芽完成签到 ,获得积分10
18秒前
高雅和恬静完成签到,获得积分10
18秒前
一株多肉完成签到,获得积分10
21秒前
22秒前
ZJRerrr发布了新的文献求助10
22秒前
22秒前
xiaom发布了新的文献求助10
22秒前
23秒前
23秒前
香蕉觅云应助fsxadada123采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406