Predicting Future Disorders via Temporal Knowledge Graphs and Medical Ontologies

计算机科学 知识图 医学知识 数据科学 情报检索 人工智能 自然语言处理 医学 医学教育
作者
Marco Postiglione,Daniel Bean,Željko Kraljević,Richard Dobson,Vincenzo Moscato
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4238-4248 被引量:2
标识
DOI:10.1109/jbhi.2024.3390419
摘要

Despite the vast potential for insights and value present in Electronic Health Records (EHRs), it is challenging to fully leverage all the available information, particularly that contained in the free-text data written by clinicians describing the health status of patients. The utilization of Named Entity Recognition and Linking tools allows not only for the structuring of information contained within free-text data, but also for the integration with medical ontologies, which may prove highly beneficial for the analysis of patient medical histories with the aim of forecasting future medical outcomes, such as the diagnosis of a new disorder. In this paper, we propose MedTKG, a Temporal Knowledge Graph (TKG) framework that incorporates both the dynamic information of patient clinical histories and the static information of medical ontologies. The TKG is used to model a medical history as a series of snapshots at different points in time, effectively capturing the dynamic nature of the patient's health status, while a static graph is used to model the hierarchies of concepts extracted from domain ontologies. The proposed method aims to predict future disorders by identifying missing objects in the quadruple 〈s, r, ?, t 〉, where s and r denote the patient and the disorder relation type, respectively, and t is the timestamp of the query. The method is evaluated on clinical notes extracted from MIMIC-III and demonstrates the effectiveness of the TKG framework in predicting future disorders and of medical ontologies in improving its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁幼萱完成签到,获得积分10
刚刚
斯文败类应助zhouzhou采纳,获得10
1秒前
彭珊发布了新的文献求助10
2秒前
2秒前
英俊不凡发布了新的文献求助10
3秒前
3秒前
唠叨的曼易完成签到,获得积分10
4秒前
唐唐完成签到 ,获得积分0
5秒前
8秒前
泡泡发布了新的文献求助10
8秒前
8秒前
早茶可口完成签到,获得积分10
9秒前
9秒前
嘟嘟完成签到 ,获得积分20
11秒前
彭珊完成签到,获得积分10
12秒前
12秒前
Lyd发布了新的文献求助10
12秒前
小蘑菇应助真实的小伙采纳,获得10
14秒前
14秒前
不见高山完成签到,获得积分10
16秒前
科研通AI6应助Zero采纳,获得10
16秒前
吴总完成签到 ,获得积分10
17秒前
18秒前
小青椒应助缥缈的绿兰采纳,获得20
18秒前
鱼咬羊发布了新的文献求助30
18秒前
细腻灯泡发布了新的文献求助20
20秒前
笑点低的荔枝完成签到,获得积分10
20秒前
匆匆完成签到 ,获得积分10
21秒前
坚强夜白完成签到,获得积分10
23秒前
asurada发布了新的文献求助10
23秒前
23秒前
23秒前
英俊不凡完成签到,获得积分20
23秒前
泡泡完成签到,获得积分10
24秒前
25秒前
研友_VZG64n完成签到 ,获得积分10
25秒前
春花发布了新的文献求助30
25秒前
乐意完成签到 ,获得积分10
26秒前
26秒前
Lyd完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4337766
求助须知:如何正确求助?哪些是违规求助? 3847420
关于积分的说明 12016005
捐赠科研通 3488432
什么是DOI,文献DOI怎么找? 1914559
邀请新用户注册赠送积分活动 957522
科研通“疑难数据库(出版商)”最低求助积分说明 857911