Carbon dioxide hydrogenation to methanol by flame-deposited CuO/ZrO2-polymer membrane reactors

甲醇 二氧化碳 聚合物 化学工程 材料科学 甲醇重整装置 碳纤维 甲烷 膜反应器 化学 废物管理 催化作用 有机化学 蒸汽重整 复合材料 工程类 制氢 生物化学 复合数
作者
Quang Huy Pham,Eirini Goudeli,Colin A. Scholes
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:489: 151442-151442 被引量:5
标识
DOI:10.1016/j.cej.2024.151442
摘要

Carbon dioxide hydrogenation for methanol synthesis, within the framework of carbon dioxide utilization represents a promising strategy. Nevertheless, high conversion of carbon dioxide into methanol presents significant challenges, primarily arising from thermodynamic constraints and catalyst deactivation due to the formation of water as a by-product. In response to these challenges, this investigation focused on the development of an innovative hybrid catalytic membrane reactor utilizing flexible polymeric membranes with flame-made catalysts. The nanostructured CuO/ZrO2 thin layers were synthesized by flame spray pyrolysis and directly deposited on two polyimide polymers and polybenzimidazole membranes. The CuO/ZrO2-polymer membranes are reduced by H2 at 300 °C resulting in Cu/ZrO2-polymer nanocomposites. This novel hybrid membrane design facilitated the efficient separation of by-product water from the reaction environment, effectively promoting carbon dioxide conversion and ultimately leading to enhanced methanol production rate. At 200 °C and 20 bar, these catalytic membrane reactors demonstrate exceptional performance, achieving 113 % improvement in carbon dioxide conversion and a remarkable 106 % increase in methanol production rate compared to conventional catalytic fixed bed reactors. Overall, the catalytic membrane, synthesized using flame spray pyrolysis, has shown long-term stability and ability to suppress catalyst deactivation caused by water, ensuring sustained catalyst stability throughout the reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evefei完成签到,获得积分10
刚刚
Angela完成签到,获得积分10
2秒前
4秒前
赘婿应助Falling采纳,获得10
4秒前
Running发布了新的文献求助10
4秒前
peekaboo完成签到,获得积分10
5秒前
5秒前
Xiaopei发布了新的文献求助10
5秒前
茕凡桃七完成签到,获得积分10
7秒前
sunshine完成签到,获得积分10
8秒前
9秒前
酷波er应助超帅的傀斗采纳,获得10
12秒前
Xiaopei完成签到,获得积分10
13秒前
啥,这都是啥完成签到,获得积分10
15秒前
Falling完成签到,获得积分10
16秒前
科研通AI5应助小仙采纳,获得10
16秒前
李爱国应助Luna采纳,获得10
17秒前
18秒前
19秒前
凯凯完成签到,获得积分10
19秒前
20秒前
W~舞完成签到,获得积分10
21秒前
Cdy完成签到,获得积分10
21秒前
无奈世立发布了新的文献求助10
22秒前
雪白浩天完成签到,获得积分10
22秒前
ding应助grumpysquirel采纳,获得10
23秒前
南风完成签到 ,获得积分10
23秒前
24秒前
陈甸甸发布了新的文献求助10
26秒前
Persevere完成签到,获得积分10
26秒前
啦啦啦啦完成签到,获得积分10
26秒前
cdercder应助tjfwg采纳,获得10
27秒前
华仔完成签到,获得积分10
28秒前
正直的如凡完成签到,获得积分10
29秒前
29秒前
29秒前
ZDY完成签到,获得积分10
30秒前
Falling发布了新的文献求助10
30秒前
哈哈呀完成签到 ,获得积分10
30秒前
32秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729