Construction and validation of a prognostic model based on ten signature cell cycle-related genes for early-stage lung squamous cell carcinoma

比例危险模型 列线图 细胞周期 肿瘤科 单变量 接收机工作特性 阶段(地层学) 内科学 基因签名 医学 生物信息学 计算生物学 基因 生物 癌症 多元统计 基因表达 计算机科学 机器学习 遗传学 古生物学
作者
Chengpeng Zhang,Yong Huang,Chen Fang,Yingkuan Liang,Dong Jiang,Jiaxi Li,Haitao Ma,Jiang Wei,Yu Feng
出处
期刊:Cancer Biomarkers [IOS Press]
卷期号:36 (4): 313-326 被引量:1
标识
DOI:10.3233/cbm-220227
摘要

We performed a bioinformatics analysis to screen for cell cycle-related differentially expressed genes (DEGs) and constructed a model for the prognostic prediction of patients with early-stage lung squamous cell carcinoma (LSCC). From a gene expression omnibus (GEO) database, the GSE157011 dataset was randomly divided into an internal training group and an internal testing group at a 1:1 ratio, and the GSE30219, GSE37745, GSE42127, and GSE73403 datasets were merged as the external validation group. We performed single-sample gene set enrichment analysis (ssGSEA), univariate Cox analysis, and difference analysis, and identified 372 cell cycle-related genes. Additionally, we combined LASSO/Cox regression analysis to construct a prognostic model. Then, patients were divided into high-risk and low-risk groups according to risk scores. The internal testing group, discovery set, and external verification set were used to assess model reliability. We used a nomogram to predict patient prognoses based on clinical features and risk values. Clinical relevance analysis and the Human Protein Atlas (HPA) database were used to verify signature gene expression. Ten cell cycle-related DEGs (EIF2B1, FSD1L, FSTL3, ORC3, HMMR, SETD6, PRELP, PIGW, HSD17B6, and GNG7) were identified and a model based on the internal training group constructed. From this, patients in the low-risk group had a higher survival rate when compared with the high-risk group. Time-dependent receiver operating characteristic (tROC) and Cox regression analyses showed the model was efficient and accurate. Clinical relevance analysis and the HPA database showed that DEGs were significantly dysregulated in LSCC tissue. Our model predicted the prognosis of early-stage LSCC patients and demonstrated potential applications for clinical decision-making and individualized therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助陈补天采纳,获得10
1秒前
飘逸的幻灵完成签到,获得积分10
3秒前
cupid_lu发布了新的文献求助30
3秒前
5秒前
JamesPei应助甜甜采纳,获得10
6秒前
WYK发布了新的文献求助10
6秒前
852应助嘻嘻采纳,获得10
8秒前
小老板完成签到,获得积分20
8秒前
Owen应助瀼瀼采纳,获得10
9秒前
9秒前
10秒前
小枫5977完成签到 ,获得积分10
12秒前
14秒前
包容友灵完成签到,获得积分10
15秒前
gaosongsong发布了新的文献求助10
15秒前
科研通AI5应助123采纳,获得10
17秒前
妮妮完成签到,获得积分10
19秒前
Mia发布了新的文献求助10
19秒前
黎某发布了新的文献求助10
20秒前
24秒前
26秒前
Master-wang完成签到,获得积分10
26秒前
26秒前
自由思枫完成签到,获得积分10
27秒前
adazbq完成签到 ,获得积分10
27秒前
guogangyouming完成签到,获得积分10
27秒前
李健的粉丝团团长应助ZY采纳,获得10
29秒前
123发布了新的文献求助10
29秒前
是安山发布了新的文献求助10
30秒前
不摇头的向日葵完成签到,获得积分10
30秒前
棕熊熊应助石莫言采纳,获得10
31秒前
32秒前
Hello应助痴情的博超采纳,获得10
33秒前
茜你亦首歌完成签到 ,获得积分10
38秒前
英俊的铭应助123采纳,获得10
39秒前
sltg发布了新的文献求助10
39秒前
41秒前
不加糖的刘先森完成签到,获得积分10
42秒前
robust66完成签到,获得积分10
44秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440