Exploring the potentials of artificial intelligence towards carbon neutrality: Technological convergence forecasting through link prediction and community detection

计算机科学 随机森林 人工智能 机器学习 选择(遗传算法) 排名(信息检索) 数据挖掘 特征选择 数据科学 过程(计算) 技术融合 趋同(经济学) 模块化(生物学) 中立 经济 哲学 操作系统 认识论 生物 遗传学 经济增长
作者
Xi Xi,Jianyu Zhao,Lean Yu,Ce Wang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:190: 110015-110015 被引量:9
标识
DOI:10.1016/j.cie.2024.110015
摘要

To explore future opportunities for artificial intelligence (AI) in achieving carbon neutrality goals, this study introduces a forecasting framework that combines link prediction and community detection. The proposed framework begins by utilizing patent information and the International Patent Classification to construct a co-occurrence network. Subsequently, it is computed and validated using two emerging technology datasets: one related to AI towards carbon neutrality and the other to Virtual Reality. A feature selection method and classification model are employed in this process. Finally, predicted convergence links are clustered using network modularity detection to unveil future trends. Through a comprehensive comparison of various similarity indicators in link prediction, this study identifies local indices (Resource Allocation, Adam-Adar) and global indices (Rooted Pagerank, SimRank) as the most featured prediction indicators. These research findings address a gap in the existing literature by providing insights into the rationale behind the selection of link similarity indicators, thereby resolving the issue of randomness in indicator selection. This study also finds that among all single and ensemble models, tree-based models, particularly Random Forest, emerge as the best-performing classifiers. The predicted results suggest that AI technologies towards carbon neutrality can be categorized into two future trends: theoretical methodological foundations and application sectors. This enables the identification and recommendation of future technological potentials on both micro and macro levels. Specifically, it facilitates the discovery of the most promising subdivision technology fields in the future, operating at the microlevel of patent main grouping, often characterized by significant cross-disciplinary links, and at the macrolevel, by visualizing potential technological convergence networks and clustering the trends. The analytical processes and quantitative outcomes of this study can support strategic decision-making for AI, offering valuable insights for both policy-makers and practitioners in their pursuit of green innovation solutions towards carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
刚刚
1秒前
夜凯完成签到,获得积分10
2秒前
小半完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助咕噜咕噜采纳,获得10
2秒前
3秒前
3秒前
3秒前
温婉的白秋完成签到 ,获得积分10
3秒前
zzz完成签到,获得积分20
3秒前
4秒前
大米粒发布了新的文献求助10
4秒前
4秒前
啊萍发布了新的文献求助10
4秒前
浮游应助Active采纳,获得10
5秒前
实习生ss发布了新的文献求助10
5秒前
都哦都完成签到,获得积分20
6秒前
bamboo发布了新的文献求助10
7秒前
小胖子发布了新的文献求助10
7秒前
深情安青应助milkmore采纳,获得10
7秒前
人沐发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
9秒前
天天发布了新的文献求助10
9秒前
烟花应助单纯丹秋采纳,获得10
10秒前
科研通AI5应助利是封采纳,获得10
10秒前
烟花应助周繁采纳,获得10
10秒前
10秒前
10秒前
JamesPei应助积极的道天采纳,获得10
10秒前
希望天下0贩的0应助Nathan采纳,获得10
12秒前
周以情完成签到,获得积分20
12秒前
李爱国应助世界尽头采纳,获得10
13秒前
13秒前
Jnscal完成签到,获得积分10
13秒前
小肥锅发布了新的文献求助10
14秒前
wanci应助jos采纳,获得10
14秒前
14秒前
JamesPei应助feng采纳,获得10
14秒前
宇神完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676060
求助须知:如何正确求助?哪些是违规求助? 4053945
关于积分的说明 12535999
捐赠科研通 3748046
什么是DOI,文献DOI怎么找? 2070131
邀请新用户注册赠送积分活动 1099180
科研通“疑难数据库(出版商)”最低求助积分说明 978873