亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Optimization of AGV Path Planning: An RRT*-ACO Algorithm

蚁群优化算法 计算机科学 随机树 路径(计算) 运动规划 数学优化 趋同(经济学) 算法 搜索算法 人工智能 数学 机器人 程序设计语言 经济 经济增长
作者
Wenjuan Wang,Jiaye Li,Zongning Bai,Zhonghua Wei,Jingxuan Peng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 18387-18399 被引量:9
标识
DOI:10.1109/access.2024.3359748
摘要

Automated guided vehicle (AGV) smart parking provides a new solution to solve the problem of urban parking difficulties. In the AGV parking lot, whether the AGV running path is reasonable affects the transportation efficiency of the entire parking lot. RRT algorithm and ant colony algorithm can achieve good path planning effect for AGV. However, the use of uniformly distributed initial pheromones can easily lead to blind search and local optimization in the early stage of the algorithm, resulting in a decrease in AGV efficiency. In this paper, an AGV based on the fast-scaling random tree-ant colony algorithm (RRT*-ACO) is proposed. The path planning method uses the fast search mechanism of RRT* algorithm and the positive feedback advantage of ant colony algorithm to combine the two algorithms and add them to the RRT* algorithm. The two-way search, heuristic dynamic sampling and dynamic step size strategies are used to accelerate the search speed of the RRT* algorithm, quickly generate an initial path, and then deploy different concentrations of initial pheromones according to the initial path to guide the ant colony algorithm search. Then, the silo excavation search strategy is added to the ant colony algorithm, which improves the pheromone update rule and reduces the number of iterations of the ant colony algorithm. Finally, several simulation experiments are carried out on the algorithm in maps of different scales, and the comparative experimental results show that the RRT*-ACO algorithm has fast convergence speed, better global search ability, and the path planning efficiency is significantly higher than that of traditional ant colony algorithm and ant colony system, and has better robustness in large-scale maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风和日li完成签到,获得积分0
刚刚
刚刚
1秒前
吴亚博发布了新的文献求助10
2秒前
顾矜应助小吕采纳,获得10
3秒前
3秒前
fan完成签到,获得积分10
4秒前
啦啦啦发布了新的文献求助10
5秒前
common1988发布了新的文献求助10
6秒前
6秒前
HeLL0完成签到 ,获得积分10
6秒前
shenlee发布了新的文献求助10
6秒前
fan发布了新的文献求助10
6秒前
Hi完成签到 ,获得积分10
8秒前
小小猪完成签到,获得积分10
8秒前
合一海盗完成签到,获得积分10
9秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
帮主哥哥应助科研通管家采纳,获得30
11秒前
11秒前
研友_Zzrx6Z发布了新的文献求助10
11秒前
乐乐应助fan采纳,获得10
12秒前
小廖发布了新的文献求助10
13秒前
heihei完成签到,获得积分10
16秒前
孤独的涵柳完成签到 ,获得积分10
18秒前
王者归来完成签到,获得积分10
18秒前
20秒前
小吕发布了新的文献求助10
27秒前
28秒前
29秒前
32秒前
34秒前
芳华如梦发布了新的文献求助10
39秒前
希望天下0贩的0应助zc采纳,获得10
40秒前
42秒前
sllytn完成签到,获得积分10
42秒前
Hyp完成签到 ,获得积分10
46秒前
小北发布了新的文献求助10
48秒前
芳华如梦完成签到,获得积分10
48秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087