EgoMUIL: Enhancing Spatio-temporal User Identity Linkage in Location-Based Social Networks with Ego-Mo Hypergraph

计算机科学 地点 图形 超图 社交网络(社会语言学) 理论计算机科学 联动装置(软件) 链接数据 相似性(几何) 数据挖掘 社会化媒体 情报检索 人工智能 万维网 数学 语义网 化学 哲学 离散数学 图像(数学) 基因 生物化学 语言学
作者
Haojun Huang,Fengxiang Ding,Hao Yin,Gaoyang Liu,Chen Wang,Dapeng Wu
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (8): 8341-8354 被引量:2
标识
DOI:10.1109/tmc.2023.3345312
摘要

Users tend to own multiple accounts on different location-based social network (LBSN) platforms, and they typically engage with diverse social circles on each platform within the same locations. Consequently, linking these accounts across separate networks becomes essential, playing a critical role in information fusion. Previous works accomplishing user identity linkage (UIL) utilize individual mobility records, which are significantly affected by the issue of data scarcity. In this paper, we propose EgoMUIL, a heterogeneous graph embedding approach specifically devised for information propagation, aiming to alleviate the scarcity problem to some extent. Considering that follow relations of respective networks also hold great significance for the UIL task, we are inspired to enrich individual limited mobility records through follow relations. Our preliminary research reveals that direct common follow relations are quite insufficient. Since the followers with the same spatio-temporal mode tend to have social connections, we first mine closely-related users for each user through topology and locality similarity, generating respective cross-domain ego-networks. Subsequently, we construct a heterogeneous ego-mo hypergraph consisting of mobility and ego-networks. We propose a novel graph convolutional network (GCN)-based approach to learn user representations, which enables the aggregation of information from surrounding nodes, incorporating topological similarities, stay locality similarities, and co-occurrence frequencies. The resulting embeddings provide comprehensive representations of users and locations, capturing their characteristics and relationships across platforms, which further facilitates the UIL task. Our experimental results on real-world check-in datasets from Foursquare and Twitter demonstrate that EgoMUIL outperforms the state-of-the-art methods on the UIL task. Notably, EgoMUIL exhibits superior performance in scenarios involving limited check-in records and follow relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
libling完成签到,获得积分10
1秒前
Serena发布了新的文献求助10
1秒前
2秒前
sekidesu完成签到,获得积分10
2秒前
哭泣嵩发布了新的文献求助10
2秒前
3秒前
淡淡的归尘完成签到,获得积分10
3秒前
复杂寄文发布了新的文献求助10
4秒前
5秒前
5秒前
阿切发布了新的文献求助50
5秒前
在水一方应助下次见采纳,获得10
5秒前
Akim应助10000SCI采纳,获得10
5秒前
WW完成签到 ,获得积分10
5秒前
搜集达人应助小羊采纳,获得10
5秒前
JacobCheng1发布了新的文献求助10
5秒前
6秒前
6秒前
lsc完成签到 ,获得积分10
6秒前
7秒前
媛媛完成签到,获得积分10
7秒前
852应助认真的长颈鹿采纳,获得10
8秒前
外向芫完成签到,获得积分10
8秒前
Shit完成签到,获得积分10
8秒前
科研小白完成签到,获得积分10
8秒前
zhu完成签到,获得积分10
9秒前
10秒前
无妄生欢完成签到,获得积分10
10秒前
11秒前
11秒前
在水一方应助第七片海采纳,获得10
11秒前
11秒前
好好学习完成签到,获得积分10
11秒前
yrt发布了新的文献求助10
11秒前
赵炎完成签到 ,获得积分10
11秒前
科研通AI5应助自闭的牛马采纳,获得10
11秒前
JacobCheng1发布了新的文献求助10
11秒前
12秒前
Serena完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817624
求助须知:如何正确求助?哪些是违规求助? 3360911
关于积分的说明 10410260
捐赠科研通 3078989
什么是DOI,文献DOI怎么找? 1690938
邀请新用户注册赠送积分活动 814240
科研通“疑难数据库(出版商)”最低求助积分说明 768068