Constructing Integrative Cerna Networks and Finding Prognostic Biomarkers in Renal Cell Carcinoma

竞争性内源性RNA 小RNA 生物 计算生物学 基因 假基因 生物信息学 长非编码RNA 核糖核酸 遗传学 基因组
作者
Seokwoo Lee,Wook Lee,Shulei Ren,Byungkyu Park,Kyungsook Han
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 2671-2680 被引量:1
标识
DOI:10.1109/tcbb.2022.3214190
摘要

Inspired by a newly discovered gene regulation mechanism known as competing endogenous RNA (ceRNA) interactions, several computational methods have been proposed to generate ceRNA networks. However, most of these methods have focused on deriving restricted types of ceRNA interactions such as lncRNA-miRNA-mRNA interactions. Competition for miRNA-binding occurs not only between lncRNAs and mRNAs but also between lncRNAs or between mRNAs. Furthermore, a large number of pseudogenes also act as ceRNAs, thereby regulate other genes. In this study, we developed a general method for constructing integrative networks of all possible interactions of ceRNAs in renal cell carcinoma (RCC). From the ceRNA networks we derived potential prognostic biomarkers, each of which is a triplet of two ceRNAs and miRNA (i.e., ceRNA-miRNA-ceRNA). Interestingly, some prognostic ceRNA triplets do not include mRNA at all, and consist of two non-coding RNAs and miRNA, which have been rarely known so far. Comparison of the prognostic ceRNA triplets to known prognostic genes in RCC showed that the triplets have a better predictive power of survival rates than the known prognostic genes. Our approach will help us construct integrative networks of ceRNAs of all types and find new potential prognostic biomarkers in cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上完成签到,获得积分10
刚刚
潇洒难摧完成签到,获得积分20
3秒前
热心海豚发布了新的文献求助10
3秒前
小巧满天完成签到 ,获得积分10
4秒前
5秒前
熊伪装完成签到,获得积分10
5秒前
逸云完成签到,获得积分10
6秒前
研友_LpvQlZ发布了新的文献求助10
6秒前
科研通AI2S应助雨中尘埃采纳,获得10
6秒前
6秒前
7秒前
缓慢孤菱完成签到,获得积分10
7秒前
yangqisen完成签到,获得积分10
7秒前
9秒前
xiaofeiyan发布了新的文献求助30
9秒前
Liu_Ci发布了新的文献求助10
11秒前
xmh发布了新的文献求助30
11秒前
大帅哥发布了新的文献求助10
11秒前
从容傲柏发布了新的文献求助10
13秒前
sxs完成签到 ,获得积分10
14秒前
政政勇闯世界完成签到,获得积分10
14秒前
打屁飞完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
深情安青应助吴一一采纳,获得10
17秒前
情怀应助从容傲柏采纳,获得10
18秒前
淡然的含卉应助莲枳榴莲采纳,获得10
18秒前
18秒前
体贴的青烟完成签到,获得积分10
18秒前
HH完成签到,获得积分10
20秒前
怡然大楚发布了新的文献求助20
21秒前
谨慎晓灵完成签到 ,获得积分20
22秒前
I38899完成签到 ,获得积分10
22秒前
雨中尘埃完成签到,获得积分20
23秒前
Nicole完成签到,获得积分10
23秒前
by发布了新的文献求助10
23秒前
SciGPT应助LFFF999采纳,获得10
24秒前
燚龘完成签到,获得积分10
24秒前
小蘑菇应助Angelyang采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110524
求助须知:如何正确求助?哪些是违规求助? 3648942
关于积分的说明 11557476
捐赠科研通 3354163
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825882