Effects of nanobubbles on methane hydrate dissociation: A molecular simulation study

水合物 甲烷 离解(化学) 笼状水合物 化学 化学物理 化学工程 分子动力学 过饱和度 动力学 物理化学 计算化学 有机化学 工程类 物理 量子力学
作者
Bin Fang,Othonas A. Moultos,Tao Lü,Jiaxin Sun,Zhichao Liu,Fulong Ning,Thijs J. H. Vlugt
出处
期刊:Fuel [Elsevier BV]
卷期号:345: 128230-128230 被引量:23
标识
DOI:10.1016/j.fuel.2023.128230
摘要

Hydrate dissociation is often accompanied by the formation of nanobubbles. Knowledge of the effects of nanobubbles on hydrate dissociation is essential for understanding the dynamic behavior of the hydrate phase change and improving the gas production efficiency. Here, molecular dynamics simulations were performed to study the methane hydrate dissociation kinetics with and without a pre-existing methane nanobubble. The results show that the hydrate cluster in the liquid phase dissociates layer-by-layer. This process is shown to be independent of the temperature and nanobubble presence at the simulation conditions. Hydrate dissociation does not always lead to nanobubble formation because the supersaturated methane solution can be stable for a long time. A steep methane concentration gradient was observed between the hydrate cluster surface and the methane nanobubble, which can enhance the directional migration of methane and effectively minimize the methane concentration in the liquid phase, thereby increasing the driving force for the hydrate dissociation. Our findings indicate that the presence of a nanobubble near the hydrate surface does not decrease the activation energy of hydrate dissociation, but it can increase the intrinsic decomposition rate. The average hydrate dissociation rate is linearly correlated with the mass flow rate towards the nanobubble. The mass flow rate is determined by the nanobubble size and hydrate-nanobubble distance. Our findings contribute to the fundamental understanding of the dissociation mechanism of gas hydrates in the liquid phase, which is crucial for the design and optimization of efficient gas hydrate production techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助庾觅松采纳,获得10
1秒前
Ada发布了新的文献求助10
3秒前
bkagyin应助悦耳曼凝采纳,获得10
5秒前
坚定惜梦发布了新的文献求助10
5秒前
6秒前
科研通AI5应助困困鱼采纳,获得10
7秒前
充电宝应助李里哩采纳,获得10
7秒前
7秒前
颗粒完成签到,获得积分10
10秒前
拉姆达完成签到 ,获得积分20
11秒前
11秒前
xzy998应助samllcloud采纳,获得10
12秒前
我是老大应助祝雲采纳,获得10
13秒前
深情安青应助qiqi1111采纳,获得10
13秒前
krsL完成签到,获得积分10
13秒前
卡皮巴拉发布了新的文献求助10
14秒前
14秒前
14秒前
MMMMM应助义气的采文采纳,获得30
15秒前
风的忧伤发布了新的文献求助10
15秒前
Gqx发布了新的文献求助10
15秒前
15秒前
16秒前
善学以致用应助Rcls_Wy采纳,获得10
16秒前
16秒前
华仔应助幽壑之潜蛟采纳,获得10
17秒前
任婷完成签到,获得积分10
18秒前
小马甲应助丁娜采纳,获得30
18秒前
千堆雪发布了新的文献求助10
18秒前
科研通AI2S应助fanfan采纳,获得10
18秒前
19秒前
20秒前
天天快乐应助梦想采纳,获得10
20秒前
20秒前
鳗鱼思松完成签到,获得积分10
20秒前
Robert发布了新的文献求助10
21秒前
852应助外向访卉采纳,获得10
22秒前
22秒前
zbz发布了新的文献求助10
22秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4187596
求助须知:如何正确求助?哪些是违规求助? 3723508
关于积分的说明 11732655
捐赠科研通 3401070
什么是DOI,文献DOI怎么找? 1866368
邀请新用户注册赠送积分活动 923106
科研通“疑难数据库(出版商)”最低求助积分说明 834407