Effects of nanobubbles on methane hydrate dissociation: A molecular simulation study

水合物 甲烷 离解(化学) 笼状水合物 化学 化学物理 化学工程 分子动力学 过饱和度 动力学 物理化学 计算化学 有机化学 工程类 物理 量子力学
作者
Bin Fang,Othonas A. Moultos,Tao Lü,Jiaxin Sun,Zhichao Liu,Fulong Ning,Thijs J. H. Vlugt
出处
期刊:Fuel [Elsevier BV]
卷期号:345: 128230-128230 被引量:23
标识
DOI:10.1016/j.fuel.2023.128230
摘要

Hydrate dissociation is often accompanied by the formation of nanobubbles. Knowledge of the effects of nanobubbles on hydrate dissociation is essential for understanding the dynamic behavior of the hydrate phase change and improving the gas production efficiency. Here, molecular dynamics simulations were performed to study the methane hydrate dissociation kinetics with and without a pre-existing methane nanobubble. The results show that the hydrate cluster in the liquid phase dissociates layer-by-layer. This process is shown to be independent of the temperature and nanobubble presence at the simulation conditions. Hydrate dissociation does not always lead to nanobubble formation because the supersaturated methane solution can be stable for a long time. A steep methane concentration gradient was observed between the hydrate cluster surface and the methane nanobubble, which can enhance the directional migration of methane and effectively minimize the methane concentration in the liquid phase, thereby increasing the driving force for the hydrate dissociation. Our findings indicate that the presence of a nanobubble near the hydrate surface does not decrease the activation energy of hydrate dissociation, but it can increase the intrinsic decomposition rate. The average hydrate dissociation rate is linearly correlated with the mass flow rate towards the nanobubble. The mass flow rate is determined by the nanobubble size and hydrate-nanobubble distance. Our findings contribute to the fundamental understanding of the dissociation mechanism of gas hydrates in the liquid phase, which is crucial for the design and optimization of efficient gas hydrate production techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助roaring采纳,获得10
刚刚
棖0921发布了新的文献求助10
4秒前
4秒前
weddcf发布了新的文献求助10
4秒前
Rena关注了科研通微信公众号
6秒前
hayden完成签到 ,获得积分10
6秒前
冰魂应助风华正茂采纳,获得10
6秒前
FashionBoy应助wltwb采纳,获得10
6秒前
6秒前
深情安青应助小周采纳,获得10
7秒前
我我我发布了新的文献求助10
10秒前
11秒前
FashionBoy应助醒醒采纳,获得10
11秒前
合适的安卉完成签到,获得积分10
12秒前
Dr_zhangkai完成签到,获得积分20
13秒前
14秒前
15秒前
15秒前
16秒前
malistm完成签到,获得积分10
16秒前
Rao发布了新的文献求助10
17秒前
hcjxj完成签到,获得积分10
17秒前
19秒前
Steven发布了新的文献求助30
19秒前
malistm发布了新的文献求助10
21秒前
21秒前
roaring发布了新的文献求助10
22秒前
jianhua发布了新的文献求助10
23秒前
Rao完成签到,获得积分10
23秒前
23秒前
Dawn完成签到 ,获得积分10
26秒前
科研通AI5应助roaring采纳,获得10
26秒前
周粥关注了科研通微信公众号
27秒前
27秒前
潇洒的盼烟完成签到,获得积分10
28秒前
诺诺发布了新的文献求助10
28秒前
高震博发布了新的文献求助10
30秒前
weddcf发布了新的文献求助30
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358