Identification of tomato leaf diseases based on LMBRNet

增采样 计算机科学 残余物 卷积(计算机科学) 鉴定(生物学) 联营 人工智能 核(代数) 特征(语言学) 模式识别(心理学) 特征提取 卷积神经网络 过程(计算) 数据挖掘 人工神经网络 算法 图像(数学) 数学 植物 生物 语言学 哲学 组合数学 操作系统
作者
Mingxuan Li,Guoxiong Zhou,Aibin Chen,Liujun Li,Yahui Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106195-106195 被引量:30
标识
DOI:10.1016/j.engappai.2023.106195
摘要

Tomato disease image identification plays a very important role in the field of agricultural production. Aiming at the problems of large intraclass differences, small inter-class differences and difficult feature extraction of some tomato leaf diseases, this paper proposes an identification of tomato leaf diseases based on LMBRNet. Firstly, a comprehensive grouped differentiated residual (CGDR) is built,The multi-branch structure of CGDR is used to capture the diversified feature information of tomato leaf diseases in different dimensions and receptive fields. then, a multiple residual connection scheme is adopted,using residuals to connect all layers, to ensure the maximum information transmission between layers in the network and to solve the problems of network degradation and gradient disappearance in the network training process. Secondly,the visual enhancement effectively fuses the results obtained by three different downsampling strategies using average pooling, max pooling, and 1*1 convolution. Avoid the loss of information caused by downsampling and improve the accuracy of the network. Moreover, deep separable convolution is used to optimize the network structure, reduce the amount of model parameters and reduce the computational resources occupied by training and deploying the model.we found that the depthwise separable convolution with a kernel size of 1*1 can slightly improve the efficiency of the model under the premise that it has little effect on the number of model parameters. The application results of more than 8000 images show that the overall identification accuracy is about 99.7%,higher than ResNet50(97.48%),GoogleNet(98.96%) etc. conventional models. The parameter amount of LMBRNet is 4.1M. Less than ResNet50(23M),GoogleNet(5.7M) etc. conventional models. It is worth noting that the accuracy of LMBRNet(99.7%) is similar to that of InceptionResNetV2(99.68%), but the amount of parameters of LMBRNet(4.1M) is much lower than that of InceptionResNetV2(54M). Moreover, the parameter amount of LMBRNet (4.1M) is slightly lower than that of MobileNetV2(2.2M), but the accuracy rate of LMBRNet(99.7%) is higher than that of MobileNetV2(97.87%). LMBRNet was tested on RS, SIW, Plantvillage-corn public datasets, all obtained high recognition accuracy, 82.32% on RS, 88.37% on SIW and 97.25% on Plantvillage-corn, indicating that LMBRNet has good generalization. Compare LMBRNet with advanced methods. In four different classification tasks, the performance of LMBRNet is similar to ResMLP12 and DCCAM-MRNet, and the difference of recognition accuracy between LMBRNet and ResMLP12 and DCCAM-MRNet is not more than 1%. However, the parameters of LMBRNet (4.1M) are lower than ResMLP12 (14.94M) and DCCAM MRNet (22.8M). LMBRNet is compared with MobileNetV3, an advanced lightweight classification model. LMBRNet(88.37% on SIW,82.32% ON RS) is used on certain datasets and performs better than MobileNetV3S(83.76% on SIW,75 on RS) and MobileNetV3L(84.34 on SIW,73.39 on RS). The parameters of LMBRNet(4.1M) are lower than MobileNetV3L(5.4M) and slightly higher than MobileNetV3S(2.9M). This indicates that LMBRNet has good generality even though it has a small number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
轻松盼望发布了新的文献求助10
2秒前
阳光萌萌完成签到,获得积分10
2秒前
夏冰发布了新的文献求助10
2秒前
3秒前
简单十三完成签到,获得积分10
3秒前
fddd完成签到 ,获得积分10
3秒前
落后珍发布了新的文献求助10
3秒前
叙温雨发布了新的文献求助10
3秒前
糟糕的雁菱完成签到 ,获得积分10
3秒前
科目三应助冬天该很好采纳,获得10
4秒前
4秒前
su完成签到,获得积分10
6秒前
6秒前
7秒前
轻松的小白菜完成签到,获得积分10
7秒前
科研通AI5应助新来的家伙采纳,获得10
7秒前
Michstabe完成签到,获得积分10
8秒前
8秒前
sean118完成签到 ,获得积分10
8秒前
9秒前
末123456完成签到,获得积分10
9秒前
夏冰完成签到,获得积分10
10秒前
叙温雨完成签到,获得积分10
10秒前
10秒前
10秒前
Afeng发布了新的文献求助10
10秒前
会飞的鱼完成签到,获得积分10
11秒前
rrr发布了新的文献求助10
11秒前
沉默芸发布了新的文献求助10
11秒前
Michstabe发布了新的文献求助10
12秒前
飞快的谷蕊完成签到 ,获得积分10
12秒前
科研通AI5应助wangx采纳,获得10
12秒前
SYLH应助同若离采纳,获得10
12秒前
yangyangyang完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
今后应助活泼小霸王采纳,获得10
14秒前
典雅的静发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747