Identification of tomato leaf diseases based on LMBRNet

增采样 计算机科学 残余物 卷积(计算机科学) 鉴定(生物学) 联营 人工智能 核(代数) 特征(语言学) 模式识别(心理学) 特征提取 卷积神经网络 过程(计算) 数据挖掘 人工神经网络 算法 图像(数学) 数学 植物 生物 语言学 哲学 组合数学 操作系统
作者
Mingxuan Li,Guoxiong Zhou,Aibin Chen,Liujun Li,Yahui Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106195-106195 被引量:30
标识
DOI:10.1016/j.engappai.2023.106195
摘要

Tomato disease image identification plays a very important role in the field of agricultural production. Aiming at the problems of large intraclass differences, small inter-class differences and difficult feature extraction of some tomato leaf diseases, this paper proposes an identification of tomato leaf diseases based on LMBRNet. Firstly, a comprehensive grouped differentiated residual (CGDR) is built,The multi-branch structure of CGDR is used to capture the diversified feature information of tomato leaf diseases in different dimensions and receptive fields. then, a multiple residual connection scheme is adopted,using residuals to connect all layers, to ensure the maximum information transmission between layers in the network and to solve the problems of network degradation and gradient disappearance in the network training process. Secondly,the visual enhancement effectively fuses the results obtained by three different downsampling strategies using average pooling, max pooling, and 1*1 convolution. Avoid the loss of information caused by downsampling and improve the accuracy of the network. Moreover, deep separable convolution is used to optimize the network structure, reduce the amount of model parameters and reduce the computational resources occupied by training and deploying the model.we found that the depthwise separable convolution with a kernel size of 1*1 can slightly improve the efficiency of the model under the premise that it has little effect on the number of model parameters. The application results of more than 8000 images show that the overall identification accuracy is about 99.7%,higher than ResNet50(97.48%),GoogleNet(98.96%) etc. conventional models. The parameter amount of LMBRNet is 4.1M. Less than ResNet50(23M),GoogleNet(5.7M) etc. conventional models. It is worth noting that the accuracy of LMBRNet(99.7%) is similar to that of InceptionResNetV2(99.68%), but the amount of parameters of LMBRNet(4.1M) is much lower than that of InceptionResNetV2(54M). Moreover, the parameter amount of LMBRNet (4.1M) is slightly lower than that of MobileNetV2(2.2M), but the accuracy rate of LMBRNet(99.7%) is higher than that of MobileNetV2(97.87%). LMBRNet was tested on RS, SIW, Plantvillage-corn public datasets, all obtained high recognition accuracy, 82.32% on RS, 88.37% on SIW and 97.25% on Plantvillage-corn, indicating that LMBRNet has good generalization. Compare LMBRNet with advanced methods. In four different classification tasks, the performance of LMBRNet is similar to ResMLP12 and DCCAM-MRNet, and the difference of recognition accuracy between LMBRNet and ResMLP12 and DCCAM-MRNet is not more than 1%. However, the parameters of LMBRNet (4.1M) are lower than ResMLP12 (14.94M) and DCCAM MRNet (22.8M). LMBRNet is compared with MobileNetV3, an advanced lightweight classification model. LMBRNet(88.37% on SIW,82.32% ON RS) is used on certain datasets and performs better than MobileNetV3S(83.76% on SIW,75 on RS) and MobileNetV3L(84.34 on SIW,73.39 on RS). The parameters of LMBRNet(4.1M) are lower than MobileNetV3L(5.4M) and slightly higher than MobileNetV3S(2.9M). This indicates that LMBRNet has good generality even though it has a small number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助长安采纳,获得10
1秒前
1秒前
2秒前
rubyyuan8006发布了新的文献求助10
2秒前
心悦臣服发布了新的文献求助10
2秒前
3秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
诸嵩发布了新的文献求助10
6秒前
8秒前
姚三斤发布了新的文献求助10
8秒前
xxx发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助高大头采纳,获得10
13秒前
加菲丰丰完成签到,获得积分0
14秒前
15秒前
15秒前
sw完成签到,获得积分10
15秒前
姚三斤完成签到,获得积分10
15秒前
淡dan发布了新的文献求助10
16秒前
16秒前
闪闪芯完成签到 ,获得积分10
17秒前
xxx完成签到,获得积分10
18秒前
ACE发布了新的文献求助10
21秒前
crystal发布了新的文献求助10
21秒前
小猴完成签到,获得积分10
22秒前
华仔应助luckly采纳,获得10
22秒前
saxon_zhang发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
打打应助塇塇采纳,获得10
25秒前
Epiphany完成签到 ,获得积分10
25秒前
Gpu_broken发布了新的文献求助30
25秒前
超帅怜阳完成签到,获得积分10
27秒前
27秒前
心空完成签到,获得积分10
27秒前
长安发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096447
求助须知:如何正确求助?哪些是违规求助? 4309168
关于积分的说明 13426309
捐赠科研通 4136267
什么是DOI,文献DOI怎么找? 2266010
邀请新用户注册赠送积分活动 1269252
关于科研通互助平台的介绍 1205492