计算机科学
静态路由
计算机网络
链路状态路由协议
路由表
多路径路由
多路径等成本路由
基于策略的路由
分布式计算
动态源路由
布线(电子设计自动化)
路由协议
作者
Yinji Jing,Longteng Yi,Yongli Zhao,Hua Wang,Wei Wang,Jie Zhang
摘要
Low Earth orbit (LEO) satellite networks, which are composed of multiple inter-connected satellites, have become important infrastructure for future communications. Benefiting from the high bandwidth and anti-interference of satellite laser communication, optical satellite networks, in which satellite links are lasers, can provide global Internet services and have become a research trend. The orbit at a lower altitude has advantages such as low latency, low cost, and easy deployment in LEO optical satellite networks. Meanwhile, the movement of satellites is fast and thus will result in frequent changes for ground–satellite links. The conventional static routing strategy cannot perceive the network state; therefore, the static routing is inapplicable in the case of link failure or congestion. Dynamic routing can ensure the accuracy of the network connection by routing convergence. However, the routing table needs to be updated frequently because of the highly dynamic topology, resulting in the increase in signaling overhead. To compute routing paths accurately while reducing the update frequency of the routing table, this paper proposes a path computation model based on deep learning. By learning the mapping relation of previous services and the routing paths, the model can directly output the routing path according to the current service request. Using this method, the path computation tasks depend less on the frequently updated routing table. The simulation results show that the paths computed by the proposed method are almost the same as the paths computed by Dijkstra’s algorithm, the average accuracy rate is above 90%, and the highest accuracy rate can reach 98.8%. Compared with traditional path computation, the proposed method needs to collect a large amount of previous data for training, and the training time is about several hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI