已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning-based path computation without routing convergence in optical satellite networks

计算机科学 静态路由 计算机网络 链路状态路由协议 路由表 多路径路由 多路径等成本路由 基于策略的路由 分布式计算 动态源路由 布线(电子设计自动化) 路由协议
作者
Yinji Jing,Longteng Yi,Yongli Zhao,Hua Wang,Wei Wang,Jie Zhang
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:15 (5): 294-294 被引量:9
标识
DOI:10.1364/jocn.474791
摘要

Low Earth orbit (LEO) satellite networks, which are composed of multiple inter-connected satellites, have become important infrastructure for future communications. Benefiting from the high bandwidth and anti-interference of satellite laser communication, optical satellite networks, in which satellite links are lasers, can provide global Internet services and have become a research trend. The orbit at a lower altitude has advantages such as low latency, low cost, and easy deployment in LEO optical satellite networks. Meanwhile, the movement of satellites is fast and thus will result in frequent changes for ground–satellite links. The conventional static routing strategy cannot perceive the network state; therefore, the static routing is inapplicable in the case of link failure or congestion. Dynamic routing can ensure the accuracy of the network connection by routing convergence. However, the routing table needs to be updated frequently because of the highly dynamic topology, resulting in the increase in signaling overhead. To compute routing paths accurately while reducing the update frequency of the routing table, this paper proposes a path computation model based on deep learning. By learning the mapping relation of previous services and the routing paths, the model can directly output the routing path according to the current service request. Using this method, the path computation tasks depend less on the frequently updated routing table. The simulation results show that the paths computed by the proposed method are almost the same as the paths computed by Dijkstra’s algorithm, the average accuracy rate is above 90%, and the highest accuracy rate can reach 98.8%. Compared with traditional path computation, the proposed method needs to collect a large amount of previous data for training, and the training time is about several hours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃肉的猪完成签到,获得积分20
1秒前
机灵柚子应助迟原采纳,获得10
2秒前
小蘑菇应助1234567xjy采纳,获得10
3秒前
善良的剑通发布了新的文献求助200
5秒前
阿是完成签到,获得积分10
5秒前
6秒前
lulu完成签到 ,获得积分10
9秒前
147完成签到,获得积分10
14秒前
韩星完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
聪慧海冬完成签到 ,获得积分10
17秒前
Hello应助搬砖人采纳,获得10
18秒前
hustscholar发布了新的文献求助20
19秒前
Luna发布了新的文献求助10
19秒前
徐志豪完成签到,获得积分20
20秒前
22秒前
22秒前
23秒前
27秒前
27秒前
28秒前
yuanll发布了新的文献求助10
28秒前
小星星完成签到 ,获得积分10
32秒前
32秒前
shi hui发布了新的文献求助10
33秒前
打打应助ZT9采纳,获得20
33秒前
W凯Z发布了新的文献求助10
33秒前
不安的靖柔完成签到,获得积分10
34秒前
37秒前
小马甲应助灵儿采纳,获得10
38秒前
38秒前
39秒前
册册发布了新的文献求助10
41秒前
yuanll完成签到,获得积分10
42秒前
43秒前
新明完成签到,获得积分10
43秒前
英姑应助22222采纳,获得10
43秒前
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4135600
求助须知:如何正确求助?哪些是违规求助? 3672281
关于积分的说明 11610656
捐赠科研通 3367976
什么是DOI,文献DOI怎么找? 1850254
邀请新用户注册赠送积分活动 913733
科研通“疑难数据库(出版商)”最低求助积分说明 828848