DCFusion: A Dual-Frequency Cross-Enhanced Fusion Network for Infrared and Visible Image Fusion

图像融合 鉴别器 人工智能 融合 计算机科学 计算机视觉 特征(语言学) 斑点检测 图像(数学) 模式识别(心理学) 图像处理 探测器 边缘检测 电信 语言学 哲学
作者
Dan Wu,Mina Han,Yang Yang,Shan Zhao,Yujing Rao,Hao Li,Lin Xing,Chengjiang Zhou,Haicheng Bai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:14
标识
DOI:10.1109/tim.2023.3267380
摘要

The visible image contains many high-frequency components that provide texture details with high spatial resolution and definition consistent with human visual perception, but it is easily affected by external factors such as light, weather, and obstructions. On the other hand, the infrared image is a radiation image whose contrast is determined by the temperature difference between the target and the background, and is not easily affected by external conditions. Integrating complementary information from both image types into one image is therefore very useful. In our paper, we propose a dual-frequency cross-enhanced fusion network called DCFusion for infrared and visible image fusion. We design a frequency decomposition module and a frequency enhancement module based on Laplacian of Gaussian for feature decomposition and enhancement, respectively. We then build a dual-frequency cross-enhanced fusion generator network based on these two modules to achieve enhanced fusion. We also use the sum of visible and infrared discriminator and the visible discriminator to balance our fusion results, replacing the traditional single visible discriminator. Our method is an end-to-end model, avoiding the manual design of complex fusion rules like traditional methods. Compared with existing advanced fusion algorithms, our method outperforms most of them in qualitative comparison, quantitative comparison, and target detection accuracy. Finally, the experiment proves that our method can effectively enhance the fusion of the target scene even in harsh environments such as complex lighting, low illumination, and smoke scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南浅完成签到,获得积分20
刚刚
桐桐应助云上人采纳,获得10
刚刚
完美世界应助Yang采纳,获得10
1秒前
ShellyHan发布了新的文献求助10
2秒前
我爱罗发布了新的文献求助10
3秒前
阿良完成签到,获得积分10
3秒前
Queenie发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
惊鸿客完成签到,获得积分10
7秒前
大方芾发布了新的文献求助10
7秒前
7秒前
椿椿发布了新的文献求助10
8秒前
搜集达人应助一与采纳,获得10
8秒前
杨璨禹发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
科研小炽丹完成签到,获得积分10
11秒前
合欢发布了新的文献求助10
11秒前
优秀如雪发布了新的文献求助10
12秒前
13秒前
13秒前
矢车菊完成签到 ,获得积分10
13秒前
科研通AI2S应助cxq采纳,获得10
15秒前
云上人发布了新的文献求助10
15秒前
16秒前
沙漠水发布了新的文献求助10
17秒前
ss发布了新的文献求助10
17秒前
是YY完成签到 ,获得积分10
17秒前
92年的矿泉水完成签到,获得积分10
18秒前
18秒前
kop发布了新的文献求助50
19秒前
19秒前
现在到未来完成签到,获得积分10
19秒前
万能图书馆应助chf102采纳,获得10
21秒前
21秒前
CIOOICO1发布了新的文献求助10
21秒前
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110