Exploring Self-Attention Graph Pooling With EEG-Based Topological Structure and Soft Label for Depression Detection

联营 脑电图 人工智能 图形 计算机科学 模式识别(心理学) 心理学 理论计算机科学 神经科学
作者
Tao Chen,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 2106-2118 被引量:51
标识
DOI:10.1109/taffc.2022.3210958
摘要

Electroencephalogram (EEG) has been widely used in neurological disease detection, i.e., major depressive disorder (MDD). Recently, some deep EEG-based MDD detection attempts have been proposed and achieved promising performance. These works, however, still suffer from the following limitations, such as insufficient exploration of the EEG-based topological structure, information loss caused by high-dimensional data compression, and under-estimation of intra-class difference and inter-class similarity. To solve these issues, we propose an EEG-based MDD detection model named S elf-attention G raph P ooling with S oft L abel (SGP-SL). Specifically, we explore the local and global connections among EEG channels to construct an EEG-based graph in advance. By leveraging multiple self-attention graph pooling modules, the constructed graph is then gradually refined, followed by graph pooling, to aggregate information from less-important nodes to more-important ones. In this way, the feature representation with better discriminability can be learned from EEG signals. In addition, the soft label strategy is also adopted to build the loss function, aiming to further enhance the feature discriminability. Experimental results on the MODMA dataset demonstrate the superiority of the proposed method. What's more, extensive ablation studies are conducted to verify the effectiveness of the proposed elements in our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11112233完成签到,获得积分20
2秒前
2秒前
科研dog完成签到 ,获得积分10
3秒前
研友_Z119gZ完成签到 ,获得积分10
4秒前
Seren完成签到 ,获得积分10
6秒前
陙兂完成签到,获得积分10
6秒前
Boring完成签到,获得积分10
7秒前
zouyangmingjia完成签到,获得积分10
8秒前
美好小熊猫完成签到,获得积分10
8秒前
屑屑鲨鱼完成签到 ,获得积分10
8秒前
儒雅红牛完成签到,获得积分10
10秒前
JIASHOUSHOU完成签到,获得积分10
11秒前
潇潇完成签到,获得积分10
13秒前
wln发布了新的文献求助10
13秒前
13秒前
格仔完成签到,获得积分20
14秒前
活力水桃发布了新的文献求助10
17秒前
19秒前
MCRong应助LL采纳,获得10
21秒前
丸子完成签到 ,获得积分10
23秒前
怕黑的小丸子完成签到 ,获得积分10
23秒前
恋恋青葡萄完成签到,获得积分10
25秒前
26秒前
Eusha发布了新的文献求助10
26秒前
帅气剑通完成签到,获得积分10
27秒前
27秒前
duoduo完成签到 ,获得积分10
28秒前
29秒前
勤恳易真完成签到,获得积分10
29秒前
打打应助冷酷惜寒采纳,获得10
31秒前
甜美的芷发布了新的文献求助10
31秒前
31秒前
34秒前
violet完成签到 ,获得积分10
34秒前
34秒前
35秒前
Dean应助hyd1640采纳,获得200
36秒前
追寻的语梦完成签到,获得积分10
36秒前
38秒前
吃猫的鱼发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807341
求助须知:如何正确求助?哪些是违规求助? 4122169
关于积分的说明 12753611
捐赠科研通 3856988
什么是DOI,文献DOI怎么找? 2123479
邀请新用户注册赠送积分活动 1145545
关于科研通互助平台的介绍 1038118