Two-stage subsampling variable selection for sparse high-dimensional generalized linear models

特征选择 阶段(地层学) 选择(遗传算法) 变量(数学) 数学 计算机科学 统计 人工智能 生物 数学分析 古生物学
作者
Marinela Capanu,Mihai Giurcanu,Colin B. Begg,Mithat Gönen
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
标识
DOI:10.1177/09622802251343597
摘要

Although high-dimensional data analysis has received a lot of attention after the advent of omics data, model selection in this setting continues to be challenging and there is still substantial room for improvement. Through a novel combination of existing methods, we propose here a two-stage subsampling approach for variable selection in high-dimensional generalized linear regression models. In the first stage, we screen the variables using smoothly clipped absolute deviance penalty regularization followed by partial least squares regression on repeated subsamples of the data; we include in the second stage only those predictors that were most frequently selected over the subsamples either by smoothly clipped absolute deviance or for having the top loadings in either of the first two partial least squares regression components. In the second stage, we again repeatedly subsample the data and, for each subsample, we find the best Akaike information criterion model based on an exhaustive search of all possible models on the reduced set of predictors. We then include in the final model those predictors with high selection probability across the subsamples. We prove that the proposed first-stage estimator is n 1 / 2 -consistent and that the true predictors are included in the first stage with probability converging to 1. In an extensive simulation study, we show that this two-stage approach outperforms the competitors yielding among the highest probability of selecting the true model while having one of the lowest number of false positives in the settings of logistic, Poisson, and linear regression. We illustrate the proposed method on two gene expression cancer datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助啊魏采纳,获得10
刚刚
橘子的角动量给橘子的角动量的求助进行了留言
1秒前
九湖夷上发布了新的文献求助10
2秒前
3秒前
3秒前
LuckyLiu完成签到,获得积分20
3秒前
jiadison发布了新的文献求助10
3秒前
3秒前
4秒前
zhaowenxian完成签到,获得积分10
5秒前
李健的小迷弟应助二呆熊采纳,获得10
5秒前
5秒前
6秒前
夜紫依寒完成签到,获得积分10
8秒前
大模型应助FGG采纳,获得10
9秒前
蓝色斑马发布了新的文献求助10
10秒前
10秒前
可露丽发布了新的文献求助10
10秒前
缺口口发布了新的文献求助10
10秒前
10秒前
冷傲曼卉完成签到,获得积分10
10秒前
111完成签到,获得积分10
11秒前
11秒前
12秒前
tengfei完成签到 ,获得积分10
13秒前
希望天下0贩的0应助lww采纳,获得10
14秒前
韩书琴完成签到,获得积分10
14秒前
空城发布了新的文献求助10
14秒前
14秒前
二呆熊完成签到,获得积分10
15秒前
科研通AI5应助Alex采纳,获得10
15秒前
啊魏发布了新的文献求助10
15秒前
九千七发布了新的文献求助10
16秒前
17秒前
贝贝发布了新的文献求助10
17秒前
Moment完成签到,获得积分10
18秒前
19秒前
科研小白菜完成签到,获得积分10
19秒前
悦耳的真发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404595
求助须知:如何正确求助?哪些是违规求助? 3890679
关于积分的说明 12108102
捐赠科研通 3535473
什么是DOI,文献DOI怎么找? 1939927
邀请新用户注册赠送积分活动 980836
科研通“疑难数据库(出版商)”最低求助积分说明 877501