Distributed tracking control for heterogeneous multi-agent systems via data-driven parameterisation approach

计算机科学 协议(科学) 跟踪(教育) 钥匙(锁) 过程(计算) 自动化 控制(管理) 匹配(统计) 多智能体系统 约束(计算机辅助设计) 分布式计算 控制工程 工程类 人工智能 数学 计算机安全 医学 心理学 机械工程 教育学 统计 替代医学 病理 操作系统
作者
Wenli Chen,Xiaojian Li
出处
期刊:Journal of Control and Decision [Taylor & Francis]
卷期号:: 1-13 被引量:4
标识
DOI:10.1080/23307706.2023.2238703
摘要

AbstractThe distributed tracking control problem for heterogeneous multi-agent systems with unknown system dynamics is investigated. The objective is to provide a data-driven distributed tracking control protocol that ensures tracking performance between agents and the leader. To this end, the concept of data informativity for matching conditions is introduced. Then, the data-based sufficient and necessary conditions to achieve state tracking are provided. Meanwhile, a data-driven parameterisation approach for designing the distributed tracking control protocol is given. Compared with previous results, the reference input is considered in the leader's dynamics, and the computational burden is reduced by solving a set of data-based equations and inequality constraints rather than iteration. Additionally, the developed results are still appropriate for handling the tracking control issue of the single linear system, and the current constraint that the reference system be stable is eased. Finally, two simulation examples are given to verify the proposed schemes' effectiveness.Keywords: Data-driven parameterisationheterogeneous multi-agent systemsdistributed tracking control protocolmatching conditions Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3304800, the National Natural Science Foundation of China under Grant U21A20475, 61873050, the Fundamental Research Funds for the Central Universities under Grant N2304007, and the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries under Grant 2018ZCX14.Notes on contributorsWenli ChenWenli Chen received the B.S. degree in mechanical and electrical engineering from Guangzhou University, Guangzhou, China, and M.S. degree in automation from Guangdong University of Technology, Guangzhou, China. He is currently pursuing the Ph.D. degree in control theory and engineering with Northeastern University, Shenyang, China. His research interests include data-driven control, distributed learning and optimisation, and cyber-physical systems.Xiaojian LiXiaojian Li received the B.S. and M.S. degrees in mathematics from Northeast Normal University, Changchun, China, in 2003 and 2006, respectively, and the Ph.D. degree in control theory and engineering from Northeastern University, Shenyang, China, in 2011. He is currently a Professor with the College of Information Science and Engineering, Northeastern University. His current research interests include fault diagnosis, fault-tolerant control, fuzzy control, and cyber-physical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
约翰发布了新的文献求助10
1秒前
zcx完成签到,获得积分10
2秒前
3秒前
3秒前
传奇3应助欣慰的书本采纳,获得10
6秒前
Orange应助懒羊羊采纳,获得10
6秒前
totolo发布了新的文献求助10
6秒前
邱志鸿发布了新的文献求助10
7秒前
起床了吗发布了新的文献求助10
7秒前
找寻四氢叶酸完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
调皮的千万完成签到,获得积分10
8秒前
浮游应助Adan采纳,获得10
8秒前
科研通AI6应助黄锐采纳,获得10
10秒前
10秒前
LEL发布了新的文献求助30
12秒前
起床了吗完成签到,获得积分10
13秒前
13秒前
15秒前
活泼山雁发布了新的文献求助10
16秒前
辛勤的诗柳应助democienceek采纳,获得30
16秒前
rui发布了新的文献求助10
16秒前
17秒前
星辰大海应助坚定的可愁采纳,获得30
19秒前
费慕青发布了新的文献求助40
19秒前
20秒前
LEL关闭了LEL文献求助
21秒前
冰可乐发布了新的文献求助10
23秒前
酥饼完成签到,获得积分10
23秒前
26秒前
26秒前
Zyer完成签到,获得积分10
27秒前
drlq2022完成签到,获得积分10
28秒前
董晨颖完成签到 ,获得积分10
28秒前
29秒前
芙芙芙芙芙完成签到,获得积分10
29秒前
29秒前
秦思远完成签到,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680225
求助须知:如何正确求助?哪些是违规求助? 4056341
关于积分的说明 12543003
捐赠科研通 3750985
什么是DOI,文献DOI怎么找? 2071638
邀请新用户注册赠送积分活动 1100789
科研通“疑难数据库(出版商)”最低求助积分说明 980122