Covalent Heterojunctions Enhance Bi2S3/Reduced Graphene Oxide (rGO) Nanocomposite Performance as Aqueous Zinc Ion Battery Material

材料科学 石墨烯 氧化物 阴极 X射线光电子能谱 纳米复合材料 电化学 化学工程 水溶液 无机化学 纳米技术 冶金 电极 化学 物理化学 工程类
作者
Dongni Zhao,Shaohua Zhang,Chun Lin,Jiefeng Ye,Yue Chen,Jian‐Min Zhang,Jianming Tao,Jiaxin Li,Yingbin Lin,Stijn F. L. Mertens,Oleg Kolosov,Zhigao Huang
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (4): 837-837
标识
DOI:10.1149/ma2023-014837mtgabs
摘要

The shortage of lithium resources, safety and recycling difficulty has focused attention on alternative energy storage devices in recent years. The aqueous zinc-ion battery (ZIB) stands out against such a background because of its earth abundance, safety, and environmental friendliness. 1 However, the limited choice of cathode materials hinders the development of advanced high-energy-density aqueous ZIBs. At present, manganese oxide 2 and vanadium oxide 3 are the two most widely studied zinc-ion battery cathodes, but the migration of Zn 2+ in these materials is limited by the strong electrostatic interaction with lattice oxygen ions, resulting in poor reversible capacity. Metal sulfides, instead, may effectively improve the electrochemical performance reversibility of ZIBs. Layered metal sulfides have been extensively studied in monovalent cation (Li + , Na + , K + ) rechargeable batteries. 4 However, although limited studies with Bi 2 S 3 5,6 as ZIB cathode material exist, their detailed electrochemical charge storage and transfer mechanisms are not well understood. In this work, we explore the effect of covalent anchoring Bi 2 S 3 on reduced graphene oxide (rGO) on the stability and cycling performance as a cathode for aqueous ZIBs. During the hydrothermal synthesis, the reduced graphene oxide serves as the nucleation substrate enabling the formation of fine and uniformly sized Bi 2 S 3 grains, Figure 1 (a). Raman and X-ray photoelectron spectroscopy (XPS) confirm the formation of Bi-O-C heterojunctions during hydrothermal synthesis. These oxygen bridges serve as efficient electron transfer channels in the Bi 2 S 3 /rGO composite for rapid charge compensation during Zn 2+ incorporation/extraction. As a result, Bi 2 S 3 /rGO composite shows notably better rate performance and cycling stability compared with pristine Bi 2 S 3 . The specific capacity of Bi 2 S 3 -rGO8 composite is ~186 mAh g -1 at the current density of 500 mA g -1 after 150 cycles, considerably higher than unsupported Bi 2 S 3 . Additionally, the Bi 2 S 3 nucleated on GO with smaller particle sizes can shorten the transport path of zinc ions, which is beneficial for fast charge transfer. Therefore, Bi 2 S 3 -rGO8 can deliver more than 100 mAh g -1 at 10 A/g charge/discharge current density, Figure 1 (b). Also, the zinc storage mechanism was analyzed by X-ray diffraction spectroscopy (XRD) and XPS, indicating a reversible conversion reaction of Zn 2+ in the Bi 2 S 3 -rGO framework. During discharging, Zn 2+ is embedded in Bi 2 S 3 -rGO frame to form ZnS and Bi wrapped in rGO. The process is accompanied by the dissolution of bismuth into electrolyte and the formation of (ZnSO 4 )[Zn(OH) 2 ] 3 ·5H 2 O (ZHS) on the electrode surface. Inhibition of these two processes may further increase the cycle stability of Bi 2 S 3 -rGO. Rotating ring disc electrode (RRDE) measurements, in which we detect dissolved Bi, indicate that Bi dissolution in the electrolyte during charging/discharging is mitigated in Bi 2 S 3 /rGO electrode, compared to pristine Bi 2 S 3 . References: Z. Li, L. Wu, S. Dong, T. Xu, S. Li, Y. An, J. Jiang and X. Zhang, Adv. Funct. Mater. , 2021, 31 , 2006495. J. Long, Z. Yang, F. Yang, J. Cuan and J. Wu, Electrochim. Acta , 2020, 344 , 136155. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang and S. Chen, Mater. Lett. , 2020, 277 , 128268. Z. Hu, Q. Liu, S. Chou and S. Dou, Adv. Mater. , 2017, 29 , 1700606. S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen, P. Li, X. Qu and L. Jiao, Angew. Chem., Int. Ed. , 2021, 60 , 20286–20293. T. Xiong, Y. Wang, B. Yin, W. Shi, W. S. V. Lee and J. Xue, Nano-Micro Lett. , 2020, 12 , 8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水果完成签到,获得积分10
刚刚
自然绝悟发布了新的文献求助10
刚刚
田七发布了新的文献求助10
刚刚
刚刚
2秒前
3秒前
3秒前
耍酷驳发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
科研通AI2S应助daggeraxe采纳,获得10
5秒前
11发布了新的文献求助10
6秒前
7秒前
发嗲的鸡发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Anonymous发布了新的文献求助10
8秒前
zpctx应助ccc采纳,获得20
8秒前
wwwwc完成签到,获得积分10
9秒前
Ava应助wy0409采纳,获得30
9秒前
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
mc应助科研通管家采纳,获得10
10秒前
hbhbj应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
April应助科研通管家采纳,获得10
10秒前
Unlisted发布了新的文献求助10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
流禾乙豫完成签到 ,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
无辜听兰应助科研通管家采纳,获得50
11秒前
今后应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481669
求助须知:如何正确求助?哪些是违规求助? 4582673
关于积分的说明 14386112
捐赠科研通 4511427
什么是DOI,文献DOI怎么找? 2472323
邀请新用户注册赠送积分活动 1458599
关于科研通互助平台的介绍 1432119