清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

When it is ok to give the Robot Less: Children’s Fairness Intuitions Towards Robots

机器人 弱势群体 机器人学 心理学 人工智能 计算机科学 社会心理学 认知心理学 发展心理学 法学 政治学
作者
Oshrat Ayalon,Hannah Hok,Alex Shaw,Goren Gordon
出处
期刊:International Journal of Social Robotics [Springer Science+Business Media]
卷期号:15 (9-10): 1581-1601 被引量:4
标识
DOI:10.1007/s12369-023-01047-4
摘要

Abstract Children develop intuitions about fairness relatively early in development. While we know that children believe other humans care about distributional fairness, considerably less is known about whether they believe other agents, such as robots, do as well. In two experiments (N = 273) we investigated 4- to 9-year-old children’s intuitions about whether robots would be upset about unfair treatment as human children. Children were told about a scenario in which resources were being split between a human child and a target recipient: either another child or a robot across two conditions. The target recipient (either child or robot) received less than another child. They were then asked to evaluate how fair the distribution was, and whether the target recipient would be upset. Both Experiment 1 and 2 used the same design, but Experiment 2 also included a video demonstrating the robot’s mechanistic “robotic” movements. Our results show that children thought it was more fair to share unequally when the disadvantaged recipient was a robot rather than a child (Experiment 1 and 2). Furthermore, children thought that the child would be more upset than the robot (Experiment 2). Finally, we found that this tendency to treat these two conditions differently became stronger with age (Experiment 2). These results suggest that young children treat robots and children similarly in resource allocation tasks, but increasingly differentiate them with age. Specifically, children evaluate inequality as less unfair when the target recipient is a robot, and think that robots will be less angry about inequality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的枫叶完成签到 ,获得积分10
6秒前
FengyaoWang完成签到,获得积分10
22秒前
24秒前
刘文思完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
38秒前
脑洞疼应助刘文思采纳,获得10
39秒前
swj完成签到,获得积分10
39秒前
一个小胖子完成签到,获得积分10
48秒前
科研通AI2S应助一个小胖子采纳,获得10
54秒前
zw完成签到,获得积分10
1分钟前
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
好运常在完成签到 ,获得积分10
2分钟前
迅速的宛海完成签到 ,获得积分10
2分钟前
饱满烙完成签到 ,获得积分10
3分钟前
河鲸完成签到 ,获得积分10
3分钟前
Mannone完成签到 ,获得积分10
3分钟前
小马甲应助ccccx采纳,获得10
3分钟前
zzwwill完成签到,获得积分10
3分钟前
V_I_G完成签到 ,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
我是笨蛋完成签到 ,获得积分10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
平常以云完成签到 ,获得积分10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
丘比特应助ccccx采纳,获得10
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
1121241完成签到,获得积分10
6分钟前
Evangeline993完成签到,获得积分10
6分钟前
Lny发布了新的文献求助20
6分钟前
清秋1001完成签到 ,获得积分10
7分钟前
Axel完成签到,获得积分10
7分钟前
领导范儿应助ccccx采纳,获得10
7分钟前
浮游应助阿晓晓采纳,获得10
7分钟前
MM完成签到 ,获得积分10
7分钟前
zxq完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202905
关于积分的说明 13059033
捐赠科研通 3979009
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514