计算机科学
背景(考古学)
分割
网(多面体)
人工智能
卷积(计算机科学)
图像分割
交叉口(航空)
编码(集合论)
模式识别(心理学)
反褶积
图像(数学)
算法
人工神经网络
数学
生物
几何学
工程类
航空航天工程
古生物学
集合(抽象数据类型)
程序设计语言
作者
Fenghe Tang,Lingtao Wang,Chunping Ning,Min Xian,Jianrui Ding
标识
DOI:10.1109/isbi53787.2023.10230609
摘要
U-Net and its extensions have achieved great success in medical image segmentation. However, due to the inherent local characteristics of ordinary convolution operations, U-Net encoder cannot effectively extract global context information. In addition, simple skip connections cannot capture salient features. In this work, we propose a fully convolutional segmentation network (CMU-Net) which incorporates hybrid convolutions and multi-scale attention gate. The ConvMixer module extracts global context information by mixing features at distant spatial locations. Moreover, the multi-scale attention gate emphasizes valuable features and achieves efficient skip connections. We evaluate the proposed method using both breast ultrasound datasets and a thyroid ultrasound image dataset; and CMU-Net achieves average Intersection over Union (IoU) values of 73.27% and 84.75%, and F1 scores of 84.16% and 91.71%. The code is available at https://github.com/FengheTan9/CMU-Net.
科研通智能强力驱动
Strongly Powered by AbleSci AI