Electrochemical Processes and Reactions In Rechargeable Battery Materials Revealed via In Situ Transmission Electron Microscopy

电池(电) 材料科学 纳米技术 电化学 电解质 储能 计算机科学 电极 功率(物理) 化学 物理 物理化学 量子力学
作者
Zhefei Sun,Jianhai Pan,Weiwei Chen,Haoyu Chen,Shenghui Zhou,Xiaoyu Wu,Yangsu Wang,Kangwoon Kim,Jie Li,Haodong Liu,Yifei Yuan,Jiangwei Wang,Dong Su,Dong‐Liang Peng,Qiaobao Zhang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (2) 被引量:102
标识
DOI:10.1002/aenm.202303165
摘要

Abstract Rechargeable batteries that make renewable energy resources feasible for electrification technologies have been extensively investigated. Their corresponding performance is strongly dependent on the structural characteristics and chemical dynamics of internal electrode and electrolyte materials under operating conditions. To enhance battery performance and lifetime, a comprehensive understanding of the structure‐dynamics‐performance correlation of such materials under different working conditions is of great significance. Fortunately, in situ transmission electron microscopy (TEM) encompassing high‐resolution imaging, diffraction, and spectroscopic analysis, offers unprecedented insights into the nano/atomic scale structural changes and degradation pathways of rechargeable battery materials under operational conditions. Such insights are pivotal for a deep‐rooted understanding of reaction mechanisms and the structure‐activity interplay within battery materials. This work, therefore, highlights the advances in in situ TEM's utility in unveiling dynamic chemical and physical changes in real‐time within battery materials of rechargeable batteries. Electrochemical processes and degradation mechanisms are systematically explored and summarized. Moreover, the technical progress, challenges, and valuable insights provided by in situ TEM techniques for addressing critical issues in battery materials are underscored. The work concludes with a discussion of emerging research directions that hold the potential to revolutionize the renewable energy field in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朝夕之晖发布了新的文献求助10
刚刚
shulei完成签到,获得积分10
1秒前
sunyanghu369发布了新的文献求助10
1秒前
义气梦山发布了新的文献求助10
2秒前
天天快乐应助广旭采纳,获得10
2秒前
有结果应助binbinbin采纳,获得20
2秒前
浮游应助Cool采纳,获得10
3秒前
Hellowa发布了新的文献求助10
3秒前
蓝醉澹翠妖娆完成签到,获得积分10
3秒前
3秒前
隐形曼青应助Karma采纳,获得10
3秒前
NexusExplorer应助kkkkk采纳,获得10
3秒前
4秒前
4秒前
4秒前
叶远望完成签到,获得积分10
5秒前
1223发布了新的文献求助10
5秒前
内向小熊猫完成签到,获得积分10
5秒前
6秒前
6秒前
邵开山完成签到,获得积分10
6秒前
7秒前
明明发布了新的文献求助10
7秒前
yanglan发布了新的文献求助10
7秒前
shilong.yang完成签到,获得积分10
7秒前
cx发布了新的文献求助20
8秒前
小天才发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
baiqi发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助李健采纳,获得10
10秒前
爆米花应助Oi小鬼采纳,获得10
10秒前
10秒前
英俊的铭应助拉拉缨采纳,获得10
11秒前
习习发布了新的文献求助10
11秒前
12秒前
明明完成签到,获得积分20
13秒前
科研通AI6应助小韬采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905046
求助须知:如何正确求助?哪些是违规求助? 4183174
关于积分的说明 12988864
捐赠科研通 3949211
什么是DOI,文献DOI怎么找? 2165876
邀请新用户注册赠送积分活动 1184376
关于科研通互助平台的介绍 1090650