Backdoor Attack Against Split Neural Network-Based Vertical Federated Learning

后门 计算机科学 寄主(生物学) 嵌入 任务(项目管理) 骨料(复合) 集合(抽象数据类型) 计算机安全 人工神经网络 人工智能 班级(哲学) 机器学习 数据挖掘 生态学 材料科学 管理 经济 复合材料 生物 程序设计语言
作者
Ying He,Zhili Shen,Jingyu Hua,Qixuan Dong,Jiacheng Niu,Wei Tong,Xu Huang,Chen Li,Sheng Zhong
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 748-763 被引量:7
标识
DOI:10.1109/tifs.2023.3327853
摘要

Vertical federated learning (VFL) is being used more and more widely in industry. One of its most common application scenarios is a two-party setting: a participant (i.e., the host), who exclusively owns the labels but possesses insufficient number of features, wants to improve its model performance by combining features from another participant (i.e., the client) of a different business group. The best deep ML architecture suits for this scenario is considered to be Split Neural Network (SplitNN), in which each participant runs a self-defined bottom model to learn the hidden representations (i.e., the local embeddings) of its local data and then forwards them to the host, who runs a top model to aggregate both the local embeddings to produce the final predicts. In this paper, we assume the client is malicious and demonstrate that she/he could inject a stealthy backdoor into the top model during the training to misclassify any sample to a pre-selected target class with a high probability by just replacing its local embedding with a special trigger vector regardless of the host-side embedding. This task is non-trivial because existing data poison attacks for backdoor injection in traditional models usually require to modify the labels of a set of trigger-tagged samples of non-target classes, which is impossible here as the client has no rights to access or modify the labels exclusively owned by the host. Targeting this challenge, we propose a SplitNN-dedicated data poison attack which does not require to modify any labels but just replaces the local embeddings of a very small number of target-class samples with a carefully constructed trigger vector during training. The experiments on four datasets show that our attack can achieve an attack rate as high as 94%, while bringing negligible side-effects to the model accuracy. Moreover, it is stealthy enough to resist various anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
在水一方应助WJQ采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
shinysparrow应助科研通管家采纳,获得100
3秒前
MchemG应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得20
3秒前
啦啦啦完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
柯一一应助江沅采纳,获得10
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
zzx发布了新的文献求助10
6秒前
细心帽子完成签到 ,获得积分10
6秒前
6秒前
7秒前
欢欢完成签到,获得积分10
8秒前
哥哥发布了新的文献求助30
8秒前
czb666发布了新的文献求助10
8秒前
调皮醉波完成签到 ,获得积分10
11秒前
11秒前
hxy919693123发布了新的文献求助10
12秒前
15秒前
华仔应助伍晓博采纳,获得10
15秒前
莴苣发布了新的文献求助10
15秒前
czb666完成签到,获得积分10
16秒前
16秒前
18秒前
高求完成签到,获得积分10
20秒前
嗯啊完成签到,获得积分10
20秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965272
求助须知:如何正确求助?哪些是违规求助? 3510618
关于积分的说明 11154211
捐赠科研通 3244912
什么是DOI,文献DOI怎么找? 1792702
邀请新用户注册赠送积分活动 873943
科研通“疑难数据库(出版商)”最低求助积分说明 804126