亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Backdoor Attack Against Split Neural Network-Based Vertical Federated Learning

后门 计算机科学 寄主(生物学) 嵌入 任务(项目管理) 骨料(复合) 集合(抽象数据类型) 计算机安全 人工神经网络 人工智能 班级(哲学) 机器学习 数据挖掘 生态学 材料科学 管理 经济 复合材料 生物 程序设计语言
作者
Ying He,Zhili Shen,Jingyu Hua,Qixuan Dong,Jiacheng Niu,Wei Tong,Xu Huang,Chen Li,Sheng Zhong
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 748-763 被引量:10
标识
DOI:10.1109/tifs.2023.3327853
摘要

Vertical federated learning (VFL) is being used more and more widely in industry. One of its most common application scenarios is a two-party setting: a participant (i.e., the host), who exclusively owns the labels but possesses insufficient number of features, wants to improve its model performance by combining features from another participant (i.e., the client) of a different business group. The best deep ML architecture suits for this scenario is considered to be Split Neural Network (SplitNN), in which each participant runs a self-defined bottom model to learn the hidden representations (i.e., the local embeddings) of its local data and then forwards them to the host, who runs a top model to aggregate both the local embeddings to produce the final predicts. In this paper, we assume the client is malicious and demonstrate that she/he could inject a stealthy backdoor into the top model during the training to misclassify any sample to a pre-selected target class with a high probability by just replacing its local embedding with a special trigger vector regardless of the host-side embedding. This task is non-trivial because existing data poison attacks for backdoor injection in traditional models usually require to modify the labels of a set of trigger-tagged samples of non-target classes, which is impossible here as the client has no rights to access or modify the labels exclusively owned by the host. Targeting this challenge, we propose a SplitNN-dedicated data poison attack which does not require to modify any labels but just replaces the local embeddings of a very small number of target-class samples with a carefully constructed trigger vector during training. The experiments on four datasets show that our attack can achieve an attack rate as high as 94%, while bringing negligible side-effects to the model accuracy. Moreover, it is stealthy enough to resist various anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aprilapple发布了新的文献求助10
2秒前
Lucas应助Aprilapple采纳,获得10
14秒前
TongKY完成签到 ,获得积分10
20秒前
35秒前
Lucas应助夏天呀采纳,获得10
59秒前
muhum完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
我是老大应助夏天呀采纳,获得10
1分钟前
1分钟前
Aprilapple发布了新的文献求助10
1分钟前
專注完美近乎苛求完成签到 ,获得积分10
1分钟前
zozox完成签到 ,获得积分10
1分钟前
2分钟前
嘻嘻完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
有风的地方完成签到 ,获得积分10
2分钟前
CMJ发布了新的文献求助10
3分钟前
3分钟前
Aswl完成签到 ,获得积分10
3分钟前
JamesPei应助CMJ采纳,获得10
3分钟前
jeff发布了新的文献求助10
3分钟前
慕青应助CMJ采纳,获得10
3分钟前
jeff完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
不动的大电视机完成签到,获得积分10
4分钟前
Lisa完成签到,获得积分10
4分钟前
噗噗完成签到 ,获得积分10
4分钟前
科研通AI5应助CMJ采纳,获得10
4分钟前
充电宝应助CMJ采纳,获得10
4分钟前
大模型应助CMJ采纳,获得10
5分钟前
FashionBoy应助Sience采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316766
求助须知:如何正确求助?哪些是违规求助? 3835099
关于积分的说明 11994877
捐赠科研通 3475346
什么是DOI,文献DOI怎么找? 1906235
邀请新用户注册赠送积分活动 952346
科研通“疑难数据库(出版商)”最低求助积分说明 853828