In vivo estimation of chicken breast and thigh muscle weights using multi-atlas-based elastic registration on computed tomography images

计算机断层摄影术 地图集(解剖学) 鸡胸脯 体内 核医学 医学 生物医学工程 计算机科学 解剖 放射科 生物 食品科学 生物技术
作者
Ádám Csóka,Shelley Simon,Tamás Péter Farkas,Sándor Szász,Zoltán Sütő,Örs Petneházy,György Kovács,I. Repa,Tamás Donkó
出处
期刊:British Poultry Science [Taylor & Francis]
卷期号:: 1-7
标识
DOI:10.1080/00071668.2025.2472903
摘要

1. This study employed an automated estimation method for quantitatively assessing valuable meat parts in broiler chickens. This involved the segmentation of computed tomography (CT) images through elastic registration, utilising feature and model selection.2. Sixty Tetra HB colour broiler chickens (30 males and 30 females) were randomly selected and examined by CT at 10 weeks of age (live weight: 2560 ± 400 g). The animals were slaughtered, and their breast and thigh muscles were dissected and weighed (thigh and breast weights were 90 ± 19 g and 337 ± 58 g). Multi-atlas registration was used for segmentation, followed by feature extraction (256 features/individual) from the CT images.3. Four different regression analysis techniques (linear, PLS, lasso and ridge) with and without feature selection were applied to the collected data with k-fold cross-validation for estimating the thigh and breast muscle weights. The feature selection produced significantly better results in all cases.4. Among the analysis techniques, lasso and ridge regression performed the best for both muscle groups (thigh and breast muscles). These were as follows: lasso for breast: r2 = 0.993, RMSE = 4.87 g; ridge for breast: r2 = 0.995, RMSE = 4.03 g; lasso for thigh: r2 = 0.976, RMSE = 2.94 g; and ridge for thigh: r2 = 0.965, RMSE = 3.53 g.5. The results demonstrated the effectiveness of the automated method, initially tested on rabbits, in accurately estimating valuable meat parts of broiler chickens. The robust performance of the selected regression models underscores the potential for widespread application in poultry production, offering a reliable and efficient means of quantitative assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linshaoyu完成签到,获得积分10
1秒前
1秒前
思源应助adeno采纳,获得10
2秒前
隐形曼青应助科研小锄头采纳,获得10
2秒前
拾月完成签到,获得积分10
2秒前
4秒前
端庄毛巾发布了新的文献求助10
4秒前
poplin发布了新的文献求助10
5秒前
L91完成签到,获得积分10
5秒前
仪仪发布了新的文献求助10
5秒前
ding应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
小马同学应助科研通管家采纳,获得20
7秒前
研究生end应助科研通管家采纳,获得20
7秒前
orixero应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
小青椒应助科研通管家采纳,获得20
7秒前
文艺傲松发布了新的文献求助10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
Viper3发布了新的文献求助30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
大模型应助坦率凉面采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
梅西完成签到 ,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
田様应助糖醋里脊加醋采纳,获得30
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488