亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A stacking ensemble machine learning model for predicting postoperative axial pain intensity in patients with degenerative cervical myelopathy

脊髓病 强度(物理) 堆积 医学 颈椎 集成学习 颈椎 计算机科学 物理医学与康复 物理疗法 人工智能 外科 核磁共振 物理 脊髓 精神科 光学
作者
Xu Chu,Jiajun Song,Jiandong Wang,Hui Kang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 9954-9954 被引量:1
标识
DOI:10.1038/s41598-025-94755-y
摘要

Machine learning (ML) has been extensively utilized to predict complications associated with various diseases. This study aimed to develop ML-based classifiers employing a stacking ensemble strategy to forecast the intensity of postoperative axial pain (PAP) in patients diagnosed with degenerative cervical myelopathy (DCM). A total of 711 consecutive postoperative DCM patients were included between 2016 and 2024, and after excluding patients who did not meet the inclusion criteria and those who met the exclusion criteria, a total of 484 patients were ultimately included in this study. The intensity of PAP was assessed using a standardized Numerical Rating Scale (NRS) score one year following surgery. Participants were randomly allocated into training and testing sub-datasets in a ratio of 8:2. 91 initial ML classifiers were developed, from which the top three highest-performing classifiers were subsequently integrated into an ensemble model utilizing 13 different machine learning models. The area under the curve (AUC) served as the primary metric for evaluating the predictive performance of all classifiers. The classifiers EmbeddingLR-RF (AUC = 0.81), EmbeddingRF-MLP (AUC = 0.81), and RFE-SVM (AUC = 0.80) were recognized as the leading three models. By implementing an ensemble learning approach such as stacking, an enhancement in performance for the ML classifier was observed after amalgamating these three models, with SVM ensemble classifier performed the best (AUC = 0.91). Decision curve analysis underscored the advantages conferred by these ensemble classifiers; notably, prediction curves for PAP intensity among DCM patients exhibited significant variability across the top three initial classifiers. The ensemble classifiers effectively predicted PAP intensity in DCM patients, showcasing substantial potential to aid clinicians in managing DCM cases while optimizing medical resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhm完成签到 ,获得积分10
刚刚
ding应助徐甜采纳,获得10
5秒前
msn00完成签到 ,获得积分10
5秒前
本本完成签到 ,获得积分10
13秒前
我真的服了完成签到 ,获得积分10
14秒前
14秒前
薛禾完成签到,获得积分20
16秒前
17秒前
Amor完成签到,获得积分10
19秒前
感冒药完成签到 ,获得积分10
21秒前
nn发布了新的文献求助10
22秒前
hhh完成签到 ,获得积分10
24秒前
Criminology34应助大胖采纳,获得30
27秒前
xl_c完成签到,获得积分10
29秒前
32秒前
徐甜发布了新的文献求助10
36秒前
38秒前
42秒前
Tendency完成签到 ,获得积分10
43秒前
李健应助aaaaal采纳,获得10
45秒前
何文鑫完成签到,获得积分10
45秒前
jyy完成签到,获得积分10
46秒前
lan兰发布了新的文献求助10
46秒前
Abdurrahman完成签到,获得积分10
48秒前
微笑的丹南完成签到,获得积分10
51秒前
54秒前
Ashely完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
活力尔岚应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得30
1分钟前
1分钟前
鹿呦完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604