MOM-BUS: A Multi-Output Framework for Precise Breast Lesion Segmentation in Ultrasound Images

分割 计算机科学 乳腺超声检查 超声波 计算机视觉 人工智能 放射科 医学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Xu Wang,Patrice Monkam,Shouliang Qi,Chang Liu,Dan Zhao,Tao Yu,Wei Qian
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (5): 055702-055702
标识
DOI:10.1088/1361-6501/add28a
摘要

Abstract Accurate breast tumor segmentation in ultrasound images is essential for cancer diagnosis and treatment planning. However, challenges such as low image contrast, irregular shapes and tumor boundary ambiguity often hinder the segmentation process. To address these issues, this study proposes a novel deep learning framework termed MOM-BUS, which utilizes a multi-tumoral area segmentation approach. It leverages shared characteristics among multiple segmentation tasks to enhance performance. Specifically, the framework delineates the intra-tumoral area (ITA), peri-tumoral area, and enlarged tumoral area (ETA) simultaneously, using their interconnected features to produce more accurate results. Furthermore, a conditional test-time ensemble approach is introduced to handle outliers and refine segmentation results by eliminating undesired elements from the network output. The effectiveness of the proposed framework has been validated through extensive experiments on two distinct datasets using five different backbone models. Experimental results consistently demonstrate that the proposed framework achieves superior segmentation performance compared to single-output counterparts, with improvements in Dice coefficient and Jaccard Index values of up to 5.35% and 5.39%, respectively. These improvement gains highlight the reliability of our framework in accurately delineating breast tumor, offering significant potential to improve subsequent malignancy assessment and clinical decision-making processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔法师完成签到,获得积分0
1秒前
NexusExplorer应助bunny采纳,获得10
1秒前
无花果应助你hao采纳,获得10
1秒前
7秒前
12秒前
风为裳完成签到,获得积分10
12秒前
小二郎应助雪山飞龙采纳,获得10
12秒前
达到顶峰发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
flash完成签到,获得积分10
14秒前
sff发布了新的文献求助10
16秒前
风趣柚子发布了新的文献求助10
16秒前
18秒前
20秒前
21秒前
yiyi131发布了新的文献求助10
24秒前
雪山飞龙发布了新的文献求助10
25秒前
sun完成签到,获得积分10
25秒前
风趣柚子发布了新的文献求助10
27秒前
ZZZZZ完成签到,获得积分10
27秒前
夏野完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
34秒前
英俊的铭应助青山随云走采纳,获得10
39秒前
传奇3应助白衣采纳,获得10
41秒前
三百一十四完成签到 ,获得积分10
42秒前
程嘉玲完成签到,获得积分20
44秒前
Xiaoxiao应助jane采纳,获得10
45秒前
Hello应助北挽采纳,获得10
46秒前
yaoyao发布了新的文献求助30
48秒前
小白完成签到,获得积分10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
我是老大应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得20
49秒前
科研通AI5应助科研通管家采纳,获得30
49秒前
小马甲应助科研通管家采纳,获得20
49秒前
49秒前
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
上官若男应助科研通管家采纳,获得10
50秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865519
求助须知:如何正确求助?哪些是违规求助? 3407926
关于积分的说明 10656024
捐赠科研通 3131930
什么是DOI,文献DOI怎么找? 1727446
邀请新用户注册赠送积分活动 832286
科研通“疑难数据库(出版商)”最低求助积分说明 780189