Machine learning in absorption-based post-combustion carbon capture systems: A state-of-the-art review

计算机科学 化石燃料 过程(计算) 燃烧 排名(信息检索) 工艺工程 吸收(声学) 碳捕获和储存(时间表) 生化工程 系统工程 环境科学 机器学习 气候变化 材料科学 化学 工程类 废物管理 有机化学 复合材料 生态学 生物 操作系统
作者
Milad Hosseinpour,Mohammad Javad Shojaei,Mohsen Salimi,Majid Amidpour
出处
期刊:Fuel [Elsevier BV]
卷期号:353: 129265-129265 被引量:31
标识
DOI:10.1016/j.fuel.2023.129265
摘要

The enormous consumption of fossil fuels from various human activities leads to a significant amount of anthropogenic CO2 emission into the atmosphere, which has already massively contributed to climate change and caused harmful impacts on human life. Carbon capture and storage (CCS) technologies have emerged as short-to-mid-term solutions to reduce atmospheric CO2 concentrations. The absorption-based post-combustion carbon capture (PCC) technology is considered the most established, traditional, and operational approach compared to other CCS technologies. Modelling and optimizing the PCC process, such as operating conditions, equipment configurations, and solvent management, are time-consuming and computationally expensive. Machine Learning (ML) has gained significant attraction as a powerful tool for conducting complex computations that facilitate the training of computer algorithms to perform specific tasks with exceptional precision, which is unattainable through conventional tools. They have been used for various applications in an efficient and cost-effective approach, including classification, prediction, clustering, ranking, and data optimization. In this article, we review the recent research progress on applying ML methods to PCC absorption-based technologies. This review provides a practical guide to categorizing the various ML methods used in PCC technologies based on limits, availability, and pros and cons. Finally, we propose a roadmap for community efforts to show the possible pathways and future research areas for developing the application of ML methods in PCC absorption-based technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球完成签到 ,获得积分10
1秒前
大饼大饼发布了新的文献求助10
2秒前
张秋雨发布了新的文献求助10
3秒前
苹果小玉发布了新的文献求助10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
瑞_应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得30
7秒前
7秒前
不困还能肝完成签到,获得积分10
7秒前
鉴湖完成签到,获得积分10
7秒前
不会学习的小郭完成签到 ,获得积分10
8秒前
77完成签到 ,获得积分10
9秒前
筋筋子完成签到,获得积分10
12秒前
努力向上的小刘完成签到,获得积分10
14秒前
17秒前
qiulong发布了新的文献求助10
20秒前
advance发布了新的文献求助10
23秒前
24秒前
27秒前
安详从云发布了新的文献求助10
27秒前
科研通AI5应助meimei采纳,获得10
30秒前
30秒前
iidae完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921