Improving Automated Evaluation of Student Text Responses Using GPT-3.5 for Text Data Augmentation

计算机科学 人工智能 分类 标记数据 集合(抽象数据类型) 训练集 稀缺 机器学习 程序设计语言 经济 微观经济学
作者
Keith Cochran,Clayton Cohn,Jean-François Rouet,Peter Hastings
出处
期刊:Lecture Notes in Computer Science 卷期号:: 217-228
标识
DOI:10.1007/978-3-031-36272-9_18
摘要

In education, intelligent learning environments allow students to choose how to tackle open-ended tasks while monitoring performance and behavior, allowing for the creation of adaptive support to help students overcome challenges. Timely feedback is critical to aid students’ progression toward learning and improved problem-solving. Feedback on text-based student responses can be delayed when teachers are overloaded with work. Automated evaluation can provide quick student feedback while easing the manual evaluation burden for teachers in areas with a high teacher-to-student ratio. Current methods of evaluating student essay responses to questions have included transformer-based natural language processing models with varying degrees of success. One main challenge in training these models is the scarcity of data for student-generated data. Larger volumes of training data are needed to create models that perform at a sufficient level of accuracy. Some studies have vast data, but large quantities are difficult to obtain when educational studies involve student-generated text. To overcome this data scarcity issue, text augmentation techniques have been employed to balance and expand the data set so that models can be trained with higher accuracy, leading to more reliable evaluation and categorization of student answers to aid teachers in the student’s learning progression. This paper examines the text-generating AI model, GPT-3.5, to determine if prompt-based text-generation methods are viable for generating additional text to supplement small sets of student responses for machine learning model training. We augmented student responses across two domains using GPT-3.5 completions and used that data to train a multilingual BERT model. Our results show that text generation can improve model performance on small data sets over simple self-augmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兰先生发布了新的文献求助10
1秒前
温婉的香氛完成签到 ,获得积分10
2秒前
傅家庆发布了新的文献求助10
2秒前
strama完成签到,获得积分10
2秒前
livinglast完成签到,获得积分10
2秒前
楠楠完成签到,获得积分10
3秒前
科研通AI6应助Cai采纳,获得10
4秒前
hhh发布了新的文献求助10
5秒前
tingtinghuang发布了新的文献求助10
5秒前
hyw完成签到,获得积分10
5秒前
yyyyy发布了新的文献求助10
6秒前
无花果应助wise111采纳,获得10
7秒前
fragile完成签到,获得积分10
7秒前
7秒前
杨明智完成签到 ,获得积分10
8秒前
宇文风行完成签到,获得积分10
10秒前
wise111完成签到,获得积分10
10秒前
娃娃鱼完成签到,获得积分10
11秒前
兰先生完成签到,获得积分10
11秒前
xiejuan完成签到,获得积分10
13秒前
刘大白完成签到,获得积分10
13秒前
大气元彤完成签到,获得积分10
14秒前
Who1990完成签到,获得积分10
16秒前
协和_子鱼完成签到,获得积分0
16秒前
阿巴完成签到,获得积分10
17秒前
我在祁连山下完成签到 ,获得积分10
17秒前
小李同学完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
天道酬勤发布了新的文献求助20
19秒前
Anonymous完成签到,获得积分10
19秒前
20秒前
calmxp完成签到,获得积分10
20秒前
20秒前
酸菜萌萌鱼完成签到,获得积分10
21秒前
yyyy完成签到,获得积分10
21秒前
韩小小完成签到 ,获得积分10
21秒前
21秒前
21秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413705
求助须知:如何正确求助?哪些是违规求助? 4530603
关于积分的说明 14123539
捐赠科研通 4445808
什么是DOI,文献DOI怎么找? 2439327
邀请新用户注册赠送积分活动 1431392
关于科研通互助平台的介绍 1409069