Flood susceptibility prediction using tree-based machine learning models in the GBA

大洪水 台风 范畴变量 随机森林 梯度升压 Boosting(机器学习) 决策树 树(集合论) 地理 水文学(农业) 环境科学 机器学习 计算机科学 数学 气象学 地质学 岩土工程 数学分析 考古
作者
Hai‐Min Lyu,Zhen‐Yu Yin
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:97: 104744-104744 被引量:24
标识
DOI:10.1016/j.scs.2023.104744
摘要

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) frequently suffered from floods accompanied with typhoons. This study developed a framework for evaluating flood susceptibility in the GBA using tree-based machine learning (ML) and geographical information system techniques. Based on the flood inventory, tree-based models, namely random forest, gradient boost decision tree, extreme gradient boosting, and categorical boosting considering topography, exposure, and vulnerability as influential factors, were used to train and test ML models, and the trained models were then used to predict flood susceptibility. All tree-based ML models achieved good performance, with accuracy values greater than 0.79. The categorical boosting model performed the best than other models to predict flood susceptibility. The flood susceptibility maps showed that more than 16% of the areas of the GBA were classified as having high flood susceptibility, and almost 70% of the historical floods were located in areas with high flood susceptibility. The model interpretation of the summary of Shapley additive explanation values indicated that the influential factors of elevation, population density, and typhoon intensity had a strong influence on flood susceptibility. The obtained spatial flood susceptibilities provide suggestions for flood disaster mitigation in the GBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
2秒前
小飞飞应助斑比采纳,获得20
2秒前
2秒前
Besty完成签到 ,获得积分10
5秒前
6秒前
jenningseastera应助shencheng采纳,获得10
6秒前
6秒前
nzh19802完成签到,获得积分10
7秒前
博闻发布了新的文献求助10
8秒前
11秒前
Gauss应助科研通管家采纳,获得30
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
nzh19802发布了新的文献求助10
12秒前
12秒前
12秒前
马保国123完成签到,获得积分10
13秒前
ZSQ完成签到,获得积分10
14秒前
SZ发布了新的文献求助20
16秒前
18秒前
18秒前
Capybara完成签到,获得积分10
20秒前
博闻完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
清欢完成签到,获得积分10
21秒前
学术垃圾1984完成签到,获得积分10
23秒前
三三完成签到,获得积分10
25秒前
潇洒皮带完成签到,获得积分10
25秒前
29秒前
Jasper应助奋斗的菲鹰采纳,获得10
29秒前
NexusExplorer应助木木杨采纳,获得50
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757