IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic

计算机科学 入侵检测系统 学习迁移 模型攻击 人工智能 特征学习 网络安全 特征(语言学) 变压器 数据挖掘 深度学习 机器学习 计算机网络 计算机安全 物理 哲学 量子力学 语言学 电压
作者
Farhan Ullah,Shamsher Ullah,Gautam Srivastava,Jerry Chun‐Wei Lin
出处
期刊:Digital Communications and Networks [KeAi]
卷期号:10 (1): 190-204 被引量:70
标识
DOI:10.1016/j.dcan.2023.03.008
摘要

A network intrusion detection system is critical for cyber security against illegitimate attacks. In terms of feature perspectives, the network traffic may include a variety of elements such as attack reference, attack type, a sub-category of attack, host information, malicious scripts, etc. In terms of network perspectives, network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic. It is challenging to identify a specific attack due to complex features and data imbalance issues. To address these issues, this paper proposed an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic (IDS-INT). IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data. First, detailed information about each type of attack is gathered from network interaction descriptions, which include network nodes, attack type, reference, host information, etc. Second, the transformer-based transfer learning approach is developed to learn the detailed feature representation using their semantic anchors. Third, the Synthetic Minority Oversampling Technique (SMOTE) is implemented to balance abnormal traffic and detect minority attacks. Fourth, the Convolution Neural Network (CNN) model is designed to extract deep features from the balanced network traffic. Finally, the hybrid approach of the CNN-Long Short-Term Memory (CNN-LSTM) model is developed to detect different types of attacks from the deep features. Detailed experiments are conducted to test the proposed approach using three standard datasets, i.e., UNSW-NB15, CIC-IDS2017, and NSL-KDD. An explainable AI approach is implemented to interpret the proposed method and develop the trustable model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄辰完成签到,获得积分10
2秒前
2秒前
无花果应助动听的易巧采纳,获得10
2秒前
3秒前
3秒前
九秋霜完成签到,获得积分10
4秒前
闾丘惜萱完成签到,获得积分10
4秒前
5秒前
5秒前
杨惠文发布了新的文献求助10
6秒前
6秒前
6秒前
horse82发布了新的文献求助10
8秒前
羊白玉完成签到 ,获得积分10
8秒前
一根藤发布了新的文献求助10
9秒前
老板娘完成签到,获得积分10
10秒前
梅子黄时雨完成签到,获得积分10
11秒前
平淡纸飞机完成签到 ,获得积分10
11秒前
共享精神应助王富贵采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
Joyj99完成签到,获得积分10
16秒前
勤劳紫青完成签到 ,获得积分10
17秒前
17秒前
18秒前
wrk完成签到,获得积分10
18秒前
换个昵称发布了新的文献求助10
19秒前
Jonathan完成签到,获得积分10
19秒前
思源应助白桃味的夏采纳,获得10
19秒前
公冶愚志发布了新的文献求助10
22秒前
充电宝应助LL采纳,获得10
22秒前
CJYY完成签到,获得积分10
23秒前
文艺的电源完成签到 ,获得积分10
25秒前
赘婿应助sssyq采纳,获得10
25秒前
SYLH应助归海亦云采纳,获得10
27秒前
酷波er应助能干亦玉采纳,获得10
27秒前
LL完成签到,获得积分10
28秒前
tananna完成签到,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351