清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Representation of multi-group cross section libraries and flux spectra for PWR materials with deep neural networks for lattice calculations

格子(音乐) 代表(政治) 谱线 章节(排版) 焊剂(冶金) 材料科学 物理 计算机科学 声学 量子力学 政治学 政治 操作系统 冶金 法学
作者
Yi Meng Chan,Jan Dufek
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:208: 110746-110746 被引量:1
标识
DOI:10.1016/j.anucene.2024.110746
摘要

To compute few-group nodal data, lattice codes first need to generate multi-group cross-sections for each constituent material within the lattice model. This generation process utilizes continuous-energy cross-section libraries, which is expensive in terms of the computing cost. Moreover, any alteration in the nuclide compositions or other state parameters necessitates the repetition of this process. To reduce the computational demands, we propose the application of a pre-trained representational model. This model, which integrates Deep Neural Networks (DNN) and Principal Component Analysis (PCA) modules, is particularly beneficial in scenarios that require repeated multi-group data processing by the lattice code. In our previous research, we established that such a model could accurately generate multi-group data for fuel pellet materials. In the present study, we have broadened the scope of the model to encompass a more extensive range of materials typically found in pressurized water reactors, including zirc-alloy cladding and borated water moderators. We also show that the model can be trained on a wide spectrum of fuel enrichments. When integrated into lattice calculations, the errors introduced by the deep-learning-based representational model result in less than 1% deviation in the keff and pin-power distribution. We have further refined the model to assess also the neutron fluxes in the fuel pellet and borated water. This refined model was subsequently employed to perform a flux-weighted collapse and generate few-group cross-section libraries for lattice calculation. The few-group libraries generated in this manner exhibited high accuracy and gave a low average keff error and minimal errors in pin power distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗艳一完成签到,获得积分10
2秒前
游01完成签到 ,获得积分10
6秒前
影子完成签到,获得积分10
9秒前
regene完成签到,获得积分10
13秒前
16秒前
21秒前
lingling完成签到 ,获得积分10
41秒前
俊逸吐司完成签到 ,获得积分10
44秒前
huanghe完成签到,获得积分10
48秒前
久久完成签到 ,获得积分10
58秒前
chengshu666发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
1分钟前
耶啵耶啵完成签到 ,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
cityhunter7777完成签到,获得积分10
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
BMG完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
真的OK完成签到,获得积分0
1分钟前
runtang完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分0
1分钟前
张浩林完成签到,获得积分10
1分钟前
清水完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
ys1008完成签到,获得积分10
1分钟前
Temperature完成签到,获得积分10
1分钟前
675完成签到,获得积分10
1分钟前
guoyufan完成签到,获得积分10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
文献蚂蚁完成签到,获得积分10
1分钟前
yzz完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555096
求助须知:如何正确求助?哪些是违规求助? 4639628
关于积分的说明 14656490
捐赠科研通 4581618
什么是DOI,文献DOI怎么找? 2512888
邀请新用户注册赠送积分活动 1487587
关于科研通互助平台的介绍 1458591