亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovery of Small Molecule Inhibitors Targeting CTNNB1 (β-catenin) for Endometrial cancer: Employing 3D QSAR, Drug-Likeness Assessment, ADMET Predictions, Molecular Docking and Simulation

广告 生物信息学 数量结构-活动关系 化学 对接(动物) 药理学 公共化学 小分子 药物发现 计算生物学 药品 立体化学 生物 生物化学 医学 护理部 基因
作者
Israr Fatima,Abdur Rehman,Peng Wang,Zhijie He,Mingzhi Liao
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:31
标识
DOI:10.2174/0109298673307257240826111754
摘要

Background: Endometrial carcinoma (EC) is a type of cancer that originates in the lining of the uterus, known as the endometrium. It is associated with various treatment options such as surgery, radiation therapy, chemotherapy, and hormone therapy, each presenting unique challenges and limitations. Beta-catenin, a protein involved in the development and progression of several cancers, including EC, plays a crucial role. Abnormal beta-catenin signaling is often linked to the emergence of specific EC subtypes, affecting tumor growth and invasion. Objectives: The study's objective is to identify compounds targeting the beta-catenin protein for treating endometrial cancer (EC) using in silico drug design. Our approach includes molecular docking to evaluate binding affinities, ADME profiling for pharmacokinetic properties, toxicity assessments, and molecular dynamics simulations to assess compound stability and interactions. Methods: Approximately one thousand anti-cancer phytochemicals were sourced from PubChem and subjected to molecular docking simulations against the beta-catenin protein. The compounds were evaluated based on their binding affinities, with the top five selected for further analysis. These five molecules underwent toxicity and ADME profiling. The Prediction of Activity Spectra for Substances (PASS) tool was used to identify compounds targeting CTNNB1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were employed to establish quantitative structure-activity relationship (QSAR) models for the five CTNNB1 antagonist molecules. Results: The selected five compounds, namely Pazopanib, Binimetinib, Telatinib, 4-(2,3-Dihydrobenzo[ b][1,4]dioxin-6-yl)-3-((5-nitrothiazol-2-yl)thio)-1H-1,2,4-triazol-5(4H)-one, and Ribavirin, demonstrated efficacy against CTNN1. MD simulations of the docked complexes confirmed the stability of these drugs in binding to the target protein. All five molecules showed promising safety and effectiveness profiles according to their ADME and toxicity evaluations. Conclusion: Through a comprehensive screening process employing in silico drug design methods, this study successfully identified five potential human anticancer drug candidates targeting the beta-catenin protein. These findings offer a foundation for further experimental validation and development towards the treatment of EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上宛秋完成签到 ,获得积分10
25秒前
27秒前
ckn完成签到,获得积分10
35秒前
搜集达人应助瘦瘦毛豆采纳,获得10
57秒前
1分钟前
瘦瘦毛豆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
燚龘完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
燚龘发布了新的文献求助10
1分钟前
only完成签到,获得积分10
2分钟前
瘦瘦毛豆发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
DELI完成签到 ,获得积分10
3分钟前
zl13332完成签到 ,获得积分10
3分钟前
在水一方应助瘦瘦毛豆采纳,获得10
4分钟前
4分钟前
万能图书馆应助寂寞致幻采纳,获得10
5分钟前
李李李完成签到,获得积分10
5分钟前
5分钟前
Sylvia卉完成签到,获得积分20
5分钟前
寂寞致幻完成签到,获得积分10
5分钟前
寂寞致幻发布了新的文献求助10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
小二郎应助玛卡巴卡采纳,获得10
5分钟前
瘦瘦毛豆发布了新的文献求助10
5分钟前
LANER完成签到 ,获得积分10
5分钟前
5分钟前
所所应助王讯采纳,获得10
6分钟前
6分钟前
王讯发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136271
求助须知:如何正确求助?哪些是违规求助? 3672998
关于积分的说明 11611426
捐赠科研通 3368282
什么是DOI,文献DOI怎么找? 1850400
邀请新用户注册赠送积分活动 913810
科研通“疑难数据库(出版商)”最低求助积分说明 828940