杂乱
逆Wishart分布
稳健性(进化)
后验概率
Wishart分布
算法
高斯分布
贝叶斯概率
联合概率分布
数学
贝叶斯推理
运动学
概率分布
计算机科学
数学优化
人工智能
统计
多元统计
物理
化学
雷达
基因
电信
经典力学
量子力学
生物化学
作者
Xiaojun Yang,Qinqin Jiao
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2023-05-12
卷期号:72 (10): 12639-12652
标识
DOI:10.1109/tvt.2023.3275633
摘要
As a computationally efficient framework, the random matrix approach can simultaneously estimate the kinematic state and extent of the extended target. For the extended target tracking in clutter, the measurement origin uncertainty, the unknown detection probability and measurement rate challenge the existing methods. In this article, we propose the Beta Gamma Gaussian inverse Wishart filter based on the variational approximation. The proposed method takes the association event as an unknown parameter with a prior distribution. Following a more rigorous path, we derive an approximate posterior distribution of the unknowns using the analytical techniques of variational Bayesian inference. The joint estimations of the kinematic state, extent, detection probability, measurement rate and association events are obtained in this work. The simulation results illustrate the effectiveness and robustness of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI